Featured Research

from universities, journals, and other organizations

Deciphering The Genetic Babel Of Brain Cells

Date:
January 26, 2005
Source:
Cell Press
Summary:
Gene chips, or microarrays, have proven to be immensely important in measuring the activity of thousands of genes at once in such cells as cancer cells or immune cells. The use of these chips has given scientists snapshots of gene activity that lead to better understanding of the genetic machinery of the cells. This understanding has led to new ways to kill cancers or to manipulate the immune system, for example.

Gene chips, or microarrays, have proven to be immensely important in measuring the activity of thousands of genes at once in such cells as cancer cells or immune cells. The use of these chips has given scientists snapshots of gene activity that lead to better understanding of the genetic machinery of the cells. This understanding has led to new ways to kill cancers or to manipulate the immune system, for example.

Gene chips consist of vast arrays of thousands of specific genetic segments spotted onto tiny chips. When gene extracts of cells are applied to the chips, labeled with fluorescent indicators, genes from the cell extracts attach to their complementary counterparts on the chips. Measurements of the fluorescence of each spot give scientists an indication of the activity of particular genes.

As vital as they are to studies of individual types of cells, gene chips have proven to be less useful in efforts to understand the genetic signatures of specific brain cells, because a myriad of subtly different subtypes of brain cells are intertwined in brain tissue.

Now, however, researchers led by Jeffrey Macklis, Bradley Molyneaux, and Paola Arlotta of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and Harvard Stem Cell Institute have developed a way to distinguish particular brain cell subtypes in tissue and to separate them for genetic analysis with microarrays. Their technique will prove enormously helpful to neuroscientists studying the development and function of the brain. For example, it will enable researchers to genetically tag, manipulate, and even knock out the function of specific subtypes of neurons to study their function. Also, by comparing genetic profiles of cells in normal and diseased brains, researchers can gain invaluable clues to the origins of neurological disorders.

In their technique, the scientists first labeled a specific brain cell in living brain tissue using fluorescent microspheres. They then used microdissection, biochemical methods, and fluorescence-activated cell sorting to separate out the particular brain cell subtype for genetic analysis using DNA microarrays. Such cell sorting isolates those cells that have absorbed the fluorescent microspheres.

In their paper, the scientists report using their new technique to unravel the genes that are active in corticospinal motor neurons (CSMN), which connect the cortex and spinal cord and carry the signals that operate muscles. These neurons are important because their degeneration contributes critically to amyotrophic lateral sclerosis (Lou Gehrig's disease) and to the loss of muscle function in spinal cord injury. Better understanding of the genes that control the development of these neurons could aid in the development of treatments for these disorders.

In their experiments, the scientists isolated the neurons and analyzed the genes that were active in CSMNs during stages of embryonic development in mice. They compared these active genes with those of two other closely related subtypes of such cortical neurons to discover specific genes that are likely critical to CSMN development.

To demonstrate that their technique had, indeed, identified functionally important genes, they knocked out one of the genes, called Ctip2, in mice. The resulting animal had defects in the connections between the cortex and spinal cord that showed that the gene was critical for CSMN development.

"The data here support the idea that a precise molecular classification of distinct classes of projection neurons is possible and provide a foundation for increasingly sophisticated analysis of stage-specific genes controlling corticospinal motor neuron development," concluded the scientists.

Paola Arlotta, Bradley J. Molyneaux, Jinhui Chen, Jun Inoue, Ryo Kominami, and Jeffrey D. Macklis: "Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo"

The other members of the research team included Jinhui Chen of the MGH-HMS Center for Nervous System Repair at Harvard Medical School and Massachusetts General Hospital and the Harvard Stem Cell Institute [presently at the Spinal Cord and Brain Injury Research Center of University of Kentucky]; and Jun Inoue and Ryo Kominami of the Graduate School of Medical and Dental Sciences at Niigata University. This work was partially supported by grants from the NIH, Christopher Reeve Paralysis Foundation, and ALS Association (to J.D.M.). P.A. was supported by a Wills Foundation Postdoctoral Fellowship. B.J.M. was supported by the Harvard M.S.T.P..

###

The context and implications of this work are discussed in a Preview by Joseph D. Dougherty and Daniel H. Geschwind.

Publishing in Neuron, Volume 45, Number 2, January 20, 2005, pages 207–221.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Deciphering The Genetic Babel Of Brain Cells." ScienceDaily. ScienceDaily, 26 January 2005. <www.sciencedaily.com/releases/2005/01/050125084335.htm>.
Cell Press. (2005, January 26). Deciphering The Genetic Babel Of Brain Cells. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2005/01/050125084335.htm
Cell Press. "Deciphering The Genetic Babel Of Brain Cells." ScienceDaily. www.sciencedaily.com/releases/2005/01/050125084335.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Ebola Virus Threatens West Africa

Deadly Ebola Virus Threatens West Africa

AP (July 28, 2014) West African nations and international health organizations are working to contain the largest Ebola outbreak in history. It's one of the deadliest diseases known to man, but the CDC says it's unlikely to spread in the U.S. (July 28) Video provided by AP
Powered by NewsLook.com
$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Two Americans Contract Ebola in Liberia

Two Americans Contract Ebola in Liberia

Reuters - US Online Video (July 28, 2014) Two American aid workers in Liberia test positive for Ebola while working to combat the deadliest outbreak of the virus ever. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins