Featured Research

from universities, journals, and other organizations

New System Can Measure Productivity Of Oceans

Date:
February 19, 2005
Source:
Oregon State University
Summary:
Researchers at Oregon State University, NASA and other institutions announced the discovery of a method to determine from outer space the productivity of marine phytoplankton – a breakthrough that may provide a new understanding of life in the world's oceans.

This data visualization comes from the MODIS instrument on NASA’s AQUA spacecraft. Here we see a measure of global chlorophyll concentrations, derived from data collected between July 1, 2002, and December 31, 2004. This visualization has a 4-kilometer measure of resolution. Credit: NASA

CORVALLIS, Ore. (February 10, 2005) -- Researchers at Oregon State University, NASA and other institutions announced today the discovery of a method to determine from outer space the productivity of marine phytoplankton – a breakthrough that may provide a new understanding of life in the world's oceans.

Related Articles


Phytoplankton are the incredibly abundant microscopic plant forms that provide the basis for most of the marine food chain, half the oxygen in our atmosphere and ultimately much of the life on Earth. They have rapid growth rates and are constantly being produced and consumed in huge amounts – but until now, it was impossible to determine their rate of growth on any broad, useful scale.

The new findings, which were developed with funding from NASA and the National Science Foundation, have been published in Global Biogeochemical Cycles, a professional journal. A group of scientists also explained the new study today in a national teleconference. "The new information on phytoplankton growth rates and biomass will greatly advance our understanding of the Earth's oceans," said Michael Behrenfeld, a research professor in the Department of Botany and Plant Pathology at OSU.

"We don't have the satellite technology available yet to fully take advantage of this new approach," he said. "But ultimately this system should have a great potential to effectively monitor phytoplankton productivity and understand the physical and chemical forces that drive it."

Although too tiny to see, phytoplankton have a net annual production that's comparable to the total amount of terrestrial plant life on Earth, scientists say. They produce about 50-65 billion tons of organic matter each year, and in the process absorb carbon dioxide and pour oxygen into the atmosphere.

Their abundance dictates the location and health of most marine fisheries. They play a critical role in marine water quality issues, can help regulate climate, are affected by climate, and are responsible for red tides and other harmful algal blooms. The very basis of sustainable ecological systems is almost impossible to understand without a good grasp of phytoplankton productivity, and its implications for global climate change.

Behrenfeld is an expert on phytoplankton, and has studied them from their molecular and metabolic pathways to their measurement from outer space.

"It was only in the late 1800s that we even realized these tiny plants formed the base of the marine food web," Behrenfeld said. "By the 1950s, we had figured out how to accurately measure their production and use observations of chlorophyll to determine their biomass. But until now, we've never been able to measure their rate of production over large areas."

That production can be enormous, and highly variable. Phytoplankton biomass can double in as little as one day, and it's routine for the entire mass of phytoplankton in an area to either be consumed by other life forms or die and sink to the ocean bottom in less than a week. "Obviously, there's a very tight coupling between phytoplankton production and its consumption or death," said Emmanuel Boss at the University of Maine, a co-author on the paper. "So it's almost impossible to really understand what's going on in the oceans without understanding that rate of production. Now we have a way to do that."

The researchers accomplished this by moving beyond the old standard for monitoring phytoplankton, the observation of chlorophyll. "The growth rate of phytoplankton can change dramatically based on such factors as water temperature, nutrients and light," Behrenfeld said. "And it's the growth rate of phytoplankton we have to know, to really take the pulse of the oceans. That's the missing piece of the puzzle." The new approach is based on the premise that the 'greenness' in phytoplankton – its level of pigmentation per cell – is a reflection of its growth rate, said David Siegel of the University of California, Santa Barbara, the third author on the paper. The researchers have discovered a means to measure phytoplankton biomass from ocean light scattering properties and infer growth rates from simultaneous measurements of how green the individual phytoplankton are, all from outer space.

The mathematics behind this approach, the researchers say, is conceptually similar to technology that's used in a home supply or paint store when someone brings in a color chip and wants to "match" the paint color. A computer analysis is done that determines the final color of the paint, factors in the base colors used to produce it and then determines the original formula needed to reproduce the paint chip. To fully use this approach, new satellite systems will be necessary that can more accurately determine both the color and brightness of marine waters, Behrenfeld said. He and colleagues are already working on a satellite concept to do that called ORCA, or Ocean Radiometer for Carbon Assessment.

However, in studies already done, the scientists have demonstrated that carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. Researchers anticipate a fundamental change in how they can model and observe carbon cycling in the global oceans.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "New System Can Measure Productivity Of Oceans." ScienceDaily. ScienceDaily, 19 February 2005. <www.sciencedaily.com/releases/2005/02/050213132003.htm>.
Oregon State University. (2005, February 19). New System Can Measure Productivity Of Oceans. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2005/02/050213132003.htm
Oregon State University. "New System Can Measure Productivity Of Oceans." ScienceDaily. www.sciencedaily.com/releases/2005/02/050213132003.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How A Chorus Led Scientists To A New Frog Species

How A Chorus Led Scientists To A New Frog Species

Newsy (Oct. 30, 2014) A frog noticed by a conservationist on New York's Staten Island has been confirmed as a new species after extensive study and genetic testing. Video provided by Newsy
Powered by NewsLook.com
Surfer Accidentally Stands on Shark, Gets Bitten

Surfer Accidentally Stands on Shark, Gets Bitten

AP (Oct. 30, 2014) A 20-year-old competition surfer said on Thursday he accidentally stepped on a shark's head before it bit him off the Australian east coast. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Ebola Inflicts Heavy Toll on Guinean Potato Trade

Ebola Inflicts Heavy Toll on Guinean Potato Trade

AFP (Oct. 30, 2014) The Ebola epidemic has seen Senegal and Guinea Bissau close its borders with Guinea and the economic consequences have started to be felt, especially in Fouta Djallon, where the renowned potato industry has been hit hard. Duration: 02:01 Video provided by AFP
Powered by NewsLook.com
Genetically Altered Glowing Flower on Display in Tokyo

Genetically Altered Glowing Flower on Display in Tokyo

Reuters - Innovations Video Online (Oct. 30, 2014) Just in time for Halloween, a glowing flower goes on display in Tokyo. Instead of sorcery and magic, its creators used science to genetically modify the flower, adding a naturally fluorescent plankton protein to its genetic mix. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins