Featured Research

from universities, journals, and other organizations

Potential Treatment For Fragile X Syndrome Demonstrated In Fruit Fly Model

Date:
March 10, 2005
Source:
University Of Pennsylvania Medical Center
Summary:
Fragile X Syndrome is one of the most commonly inherited forms of mental retardation, with an incidence of 1 in 4,000 males and 1 in 8,000 females. Not many medications exist to help Fragile X patients. Now, in a fruit fly model of the disease, researchers from the University of Pennsylvania School of Medicine and their colleagues have shown that it is possible to reverse some of the symptoms of the disorder using drugs that dampen specific neuronal overactivity.

Philadelphia - Fragile X Syndrome is one of the most commonly inherited forms of mental retardation, with an incidence of 1 in 4,000 males and 1 in 8,000 females. Not many medications exist to help Fragile X patients. Now, in a fruit fly model of the disease, researchers from the University of Pennsylvania School of Medicine and their colleagues have shown that it is possible to reverse some of the symptoms of the disorder using drugs that dampen specific neuronal overactivity. Their findings appear in the March 3, 2005 issue of Neuron.

Related Articles


Characteristics of Fragile X in people include an average IQ of about 50, deficits in certain types of short-term memory, autistic behavior, sleep problems, hyperactivity, attention deficits, and susceptibility to seizures. In humans, Fragile X syndrome is caused by the FMR1 gene not working properly or at all. This gene encodes the FMRP protein, which controls the availability of select proteins involved in neuron-to-neuron communication.

Senior author Thomas A. Jongens, PhD, Associate Professor of Genetics at Penn, and colleagues from Albert Einstein College of Medicine and Drexel University College of Medicine, as well as other labs, have developed and characterized a Drosophila fly model for Fragile X. This model is based on mutants that lack the dfmr1 gene, which encodes a protein similar to human FMR1 protein. "Interestingly, work by my lab and others have found that the dfmr1 mutants display many physical and behavioral characteristics similar to symptoms displayed by Fragile X patients," says Jongens. These include structural defects in certain neurons, enlarged testes, failure to maintain proper day/night activity patterns; attention deficits and hyperactivity, and defects in behavior-dependent learning and memory.

"Our thinking was that since so many of the behavioral and physical phenotypes in the fly model were similar to symptoms observed in fragile X patients and a mouse fragile X model, FMR1 and dfmr1 must be regulating similar biological processes in human, mice, and flies," states Jongens.

A mouse model of Fragile X also shows symptoms similar to those of Fragile X patients. Studies outside of Penn using the mouse model have demonstrated that Fragile X patients have a tendency to break down synaptic connections (sites used for neuron to neuron communication) more readily than the general population. This breakdown is due to an increased activity in the metabotropic glutamate receptor (mGluR), which is located on the surface of neurons, including in the hippocampus – the memory and learning center in the brain. In turn, this increased activity compromises neurotransmission for memory-associated functions.

Jongens and colleagues surmised that mGluR overactivity may be at the root of many of the Fragile X symptoms. Using such drugs as lithium chloride and others, known as antagonists, that block mGluR's activity, the team tested to see if the drugs could rescue any of the observed behavioral and memory defects observed in the fly model.

"What we found was very striking," says Jongens. They found that the drug treatments restored memory-dependent courtship behavior in mutant flies and reversed some of the neuronal structural defects. The group used lithium because it is known to have activities analogous to blocking mGluR-receptor activity, and it is already an FDA-approved drug used to treat other ailments in humans such as bipolar disorder.

"The big take-home message from our work is that maintaining proper regulation of mGluR signaling is a conserved function of the dFMR1 and FMRP proteins and that loss of dfmr1 function in flies leads to at least a subset of the cognitive and behavioral defects observed in the fly model," says Jongens. "These results provide a potential route by which symptoms of Fragile X patients may be ameliorated."

###

First authors on the paper are Sean M.J. McBride, Albert Einstein College of Medicine, and Catherine H. Choi, Drexel University College of Medicine. This work was funded by the National Institutes of Health and the FRAXA Research Foundation, Newburyport, MA.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Potential Treatment For Fragile X Syndrome Demonstrated In Fruit Fly Model." ScienceDaily. ScienceDaily, 10 March 2005. <www.sciencedaily.com/releases/2005/03/050309131154.htm>.
University Of Pennsylvania Medical Center. (2005, March 10). Potential Treatment For Fragile X Syndrome Demonstrated In Fruit Fly Model. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2005/03/050309131154.htm
University Of Pennsylvania Medical Center. "Potential Treatment For Fragile X Syndrome Demonstrated In Fruit Fly Model." ScienceDaily. www.sciencedaily.com/releases/2005/03/050309131154.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins