Featured Research

from universities, journals, and other organizations

NC State Paleontologist Discovers Soft Tissue In Dinosaur Bones

Date:
March 25, 2005
Source:
North Carolina State University
Summary:
Conventional wisdom among paleontologists states that when dinosaurs died and became fossilized, soft tissues didn’t preserve – the bones were essentially transformed into “rocks” through a gradual replacement of all organic material by minerals. New research by a North Carolina State University paleontologist, however, could literally turn that theory inside out.

Branching vessels found in bone matrix of T. rex (A) and ostrich (B).
Credit: Image s courtesy of North Carolina State University

Conventional wisdom among paleontologists states that when dinosaurs died and became fossilized, soft tissues didn’t preserve – the bones were essentially transformed into “rocks” through a gradual replacement of all organic material by minerals. New research by a North Carolina State University paleontologist, however, could literally turn that theory inside out.

Dr. Mary Schweitzer, assistant professor of paleontology with a joint appointment at the N.C. Museum of Natural Sciences, has succeeded in isolating soft tissue from the femur of a 68-million-year-old dinosaur. Not only is the tissue largely intact, it’s still transparent and pliable, and microscopic interior structures resembling blood vessels and even cells are still present.

In a paper published in the March 25 edition of the journal Science, Schweitzer describes the process by which she and her technician, Jennifer Wittmeyer, isolated soft organic tissue from the leg bone of a 68-million-year-old Tyrannosaurus rex.

Schweitzer was interested in studying the microstructure and organic components of a dinosaur’s bone. All bone is made up of a combination of protein (and other organic molecules) and minerals. In modern bone, removing the minerals leaves supple, soft organic materials that are much easier to work with in a lab. In contrast, fossilized bone is believed to be completely mineralized, meaning no organics are present. Attempting to dissolve the minerals from a piece of fossilized bone, so the theory goes, would merely dissolve the entire fossil.

But the team was surprised by what actually happened when they removed the minerals from the T. rex femur fragment. The removal process left behind stretchy bone matrix material that, when examined microscopically, seemed to show blood vessels, osteocytes, or bone building cells, and other recognizable organic features.

Since current data indicates that living birds are more closely related to dinosaurs than any other group, Schweitzer compared the findings from the T. rex with structures found in modern-day ostriches. In both samples, transparent branching blood vessels were present, and many of the small microstructures present in the T. rex sample displayed the same appearance as the blood and bone cells from the ostrich sample.

Schweitzer then duplicated her findings with at least three other well-preserved dinosaur specimens, one 80-million-year-old hadrosaur and two 65-million-year-old tyrannosaurs. All of these specimens preserved vessels, cell-like structures, or flexible matrix that resembled bone collagen from modern specimens.

Current theories about fossil preservation hold that organic molecules should not preserve beyond 100,000 years. Schweitzer hopes that further research will reveal exactly what the soft structures isolated from these bones are made of. Do they consist of the original cells, and if so, do the cells still contain genetic information? Her early studies of the material suggest that at least some fragments of the dinosaurs’ original molecular material may still be present.

“We may not really know as much about how fossils are preserved as we think,” says Schweitzer. “Our preliminary research shows that antibodies that recognize collagen react to chemical extracts of this fossil bone. If further studies confirm this, we may have the potential to learn more not only about the dinosaurs themselves, but also about how and why they were preserved in the first place.”

The research was funded by NC State, the N.C. Museum of Natural Sciences and the National Science Foundation.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "NC State Paleontologist Discovers Soft Tissue In Dinosaur Bones." ScienceDaily. ScienceDaily, 25 March 2005. <www.sciencedaily.com/releases/2005/03/050325100541.htm>.
North Carolina State University. (2005, March 25). NC State Paleontologist Discovers Soft Tissue In Dinosaur Bones. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2005/03/050325100541.htm
North Carolina State University. "NC State Paleontologist Discovers Soft Tissue In Dinosaur Bones." ScienceDaily. www.sciencedaily.com/releases/2005/03/050325100541.htm (accessed August 21, 2014).

Share This




More Fossils & Ruins News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Mother And Son Find Woolly Mammoth Tusks 22 Years Apart

Newsy (Aug. 15, 2014) A mother and son in Alaska uncovered woolly mammoth tusks in the same river more than two decades apart. Video provided by Newsy
Powered by NewsLook.com
Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Fossils Reveal Ancient Flying Reptile With 'Butterfly Head'

Newsy (Aug. 14, 2014) Newly found fossils reveal a previously unknown species of flying reptile with a really weird head, which some say looks like a butterfly. Video provided by Newsy
Powered by NewsLook.com
Clearing WWII's Explosive Legacy in the Pacific

Clearing WWII's Explosive Legacy in the Pacific

AFP (Aug. 11, 2014) The hulks of tanks can still be found rusting in the jungles of Palau, but the fierce fighting that scarred the Pacific island nation in WWII has left a more dangerous legacy - unexploded bombs that pose a constant risk to locals. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins