Featured Research

from universities, journals, and other organizations

Study Uncovers Bacteria's Worst Enemy

Date:
April 16, 2005
Source:
DOE/Los Alamos National Laboratory
Summary:
University of California scientists working at Los Alamos National Laboratory have found that the successful use of bacteria to remediate environmental contamination from nuclear waste and processing activities may depend more upon how resistant the bacteria are to chemicals than to how tolerant they are to radioactivity. The results of a recent Laboratory study may help make bacterial bioremediation a more widespread method for cleaning up sites contaminated with actinides and other radionuclides.

LOS ALAMOS, N.M., April 14, 2005 -- University of California scientists working at Los Alamos National Laboratory have found that the successful use of bacteria to remediate environmental contamination from nuclear waste and processing activities may depend more upon how resistant the bacteria are to chemicals than to how tolerant they are to radioactivity. The results of a recent Laboratory study may help make bacterial bioremediation a more widespread method for cleaning up sites contaminated with actinides and other radionuclides.

In research published in the journal Environmental Microbiology, Laboratory chemist Mary Neu and her colleagues describe their study of different naturally occurring bacteria used to treat actinide contamination. Actinides are the elements above atomic number 89 and are usually radioactive. The study's results indicate that actinide toxicity is primarily chemical, rather than radiological, and so a bacteria's resistance to radiation does not necessarily ensure a tolerance for radionuclides. In fact, the bacteria's worst enemy in a nuclear waste site may not be the radioactive elements, but rather, the other toxic metals that might also be found at the site.


The study also shows that contrary to the conventional wisdom, when it comes to these environmental bacteria, plutonium is less toxic than uranium and, in general, actinides are less toxic than other types of metals. This suggests that actinide toxicity will not impede bioremediation using naturally occurring bacteria.

"This study" said Neu, "is exciting because even though we've known for years that bacterial bioremediation can be a preferred method for cleaning up actinide contamination, we've never really known whether or not radioactivity or chemical toxicity will stifle the process. Our study found that actinides are chemically toxic to bacteria only at high levels far, far above concentrations at contaminated sites, and that common toxic metals, such as cadmium, nickel, and chromium, are more likely to cause problems for the bacteria."

Generally, bacteria used for bioremediation are selected to target a specific form and oxidation state of toxic pollutants, such as soluble hexavalent uranium carbonate for uranium contamination. However, a single chemical rarely contaminates soils and groundwater and combinations of actinides, radionuclides, organic chemicals and metal regularly exist at many nuclear sites. Based on the results of this study, if bioremediation is to be effective at these types of sites, the operative microorganisms must be able to grow, function and do better than other bacteria in the presence of all kinds of contaminants.

The study examined the effects of toxicity of actinides, metals and chelators on different bacteria being evaluated for radionuclide bioremediation, Deinococcus radiodurans and Pseudomonas putida, along with the toxicity of plutonium on the bacteria Shewanella putrefaciens.

In addition to Neu, the bacteria bioremediation study team includes Christy Ruggiero and Hakim Boukhalfa of the Chemistry Division, and Joseph Lack and Larry Hersman from the Laboratory's Bioscience Division.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration of the U.S. Department of Energy and works in partnership with NNSA's Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.


Story Source:

The above story is based on materials provided by DOE/Los Alamos National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Los Alamos National Laboratory. "Study Uncovers Bacteria's Worst Enemy." ScienceDaily. ScienceDaily, 16 April 2005. <www.sciencedaily.com/releases/2005/04/050416111147.htm>.
DOE/Los Alamos National Laboratory. (2005, April 16). Study Uncovers Bacteria's Worst Enemy. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2005/04/050416111147.htm
DOE/Los Alamos National Laboratory. "Study Uncovers Bacteria's Worst Enemy." ScienceDaily. www.sciencedaily.com/releases/2005/04/050416111147.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins