Featured Research

from universities, journals, and other organizations

Anammox Bacteria Produce Nitrogen Gas In Oceans' Snackbar

Date:
May 4, 2005
Source:
Max Planck Society
Summary:
Advanced measurements off the coast of Namibia give a new explanation for the extremely efficient nitrogen removal from the oxygen poor areas of the ocean.

Distribution of annual primary production in the ocean (source: http://marine.rutgers.edu/opp/swf/Production/results/all2_swf.html) and location of the Benguela upwelling system. The white box indicates the areal extent of the Benguela upwelling system. (Graphic courtesy of Max Planck Society)

Thirty to fifty percent of the global conversion of nutrients to nitrogen gas occurs in these areas. In ‘The Proceedings of the National Academy of Science of the United States (PNAS)’ of Tuesday 19 April, researchers from Bremen and Nijmegen state that this conversion is not carried out by denitrifying bacteria, as was believed for decades, but by anammox bacteria. Nitrogen compounds act as fertilizers and are the ecological basis for any lifeform on earth as these compounds limit the overall growth rate.

The researchers discovered this type of bacteria for the first time a few years ago in the oxygen poor Black Sea and now also in the open ocean. This discovery has major consequences for our understanding of the global nitrogen cycle. The Benguela current system leads to upwelling of nutrient-rich cold water off the coast of Namibia and acts as a kind of snackbar in the tropical ocean, which is visited by many animals including giant whales. The newly discovered anammox bacteria remove ammonium from the ocean, which as a result can not be taken up anymore by other organisms. Algae and cyanobacteria only partly succeed in fixing the released nitrogen gas to form new nutrients that can be fed into the nutrient cycle again.

In the article in PNAS, researchers from the Max Planck Institute for Marine Microbiology (Bremen, Germany) and the Institute of Water and Wetland Research (IWWR) of the Radboud University of Nijmegen show for the first time that anammox bacteria are present in the Atlantic ocean in oxygen poor waters at ~100 m depth. The number and activity of anammox bacteria present at this depth is sufficient to remove the ammonium that rises up from deeper waters and the seafloor. A unique combination of microbiological methods involving high resolution nutrient profiles, experiments with stable isotope labeled nutrients, depth profiles of unique membrane lipids (ladder molecules), fluorescence microscopy and DNA analyses of water samples was used to proof the abundance of anammox bacteria in the Atlantic Ocean. The discovery of anammox bacteria in the open ocean has major consequences for our understanding of the global nitrogen cycle. Models of global nitrogen budgets, which play an important role in long term climate predictions, will have to be revised. The discovered nitrogen loss has also consequences for the carbon cycle in marine ecosystems.


Denitrification.
The measurements refute the dominating theory that oceanic nitrogen loss results from the activity of bacteria that convert nitrate (via nitrite) with organic matter to nitrogen gas in the absence of oxygen (denitrification). In fact, the researchers recently discovered that anammox bacteria can use organic matter to convert nitrate into nitrite (much better than denitrifying bacteria). This new finding even increases the importance of anammox bacteria in the ocean.

New species
The anammox bacteria discovered in the Atlantic Ocean are closely related to the bacterial species Scalindua sorokinii, which was recently discovered in the Black Sea (Kuypers et al., 2003 Nature 8 April). Like their relatives in the Black Sea, the Namibian anammox bacteria contain unique ladder molecules (Damsté et al., Nature 17 October 2002) in the membrane surrounding a special prokaryotic organel in which ammonium is converted to nitrogen gas. These ladder molecules are ether bound in the membrane. This property was believed to be restricted to the Archaea, the ‘ancient’ bacteria.

Waste water treatment
The anammox process, in which ammonium is oxidized with nitrite to nitrogen gas, is a promissing alternative to current methods of nutrient nitrogen removal from waste water. The running costs of a waste water treatment system using the anammox process are only 10% of the costs of current treatment systems using conventional methods. Additionaly, the anammox process could reduce the emission of the greenhouse gas CO2 during waste water treatment by 88%. Because of these advantages the first large scale waste water treatment system was recently installed in Rotterdam (The Netherlands).

Title of publication and authors:
Massive nitrogen loss from the Benguela upwelling system through anaerobic
ammonium oxidation

Marcel M.M. Kuypers*, Gaute Lavik*, Dagmar Wöbken*, Markus Schmid, Bernhard M.
Fuchs*, Rudolf Amann*, Bo Barker Jørgensen* & Mike S.M. Jetten
*Max-Planck-Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen,
Germany Department of Microbiology, IWWR Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Story Source:

The above story is based on materials provided by Max Planck Society. Note: Materials may be edited for content and length.


Cite This Page:

Max Planck Society. "Anammox Bacteria Produce Nitrogen Gas In Oceans' Snackbar." ScienceDaily. ScienceDaily, 4 May 2005. <www.sciencedaily.com/releases/2005/05/050503104202.htm>.
Max Planck Society. (2005, May 4). Anammox Bacteria Produce Nitrogen Gas In Oceans' Snackbar. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2005/05/050503104202.htm
Max Planck Society. "Anammox Bacteria Produce Nitrogen Gas In Oceans' Snackbar." ScienceDaily. www.sciencedaily.com/releases/2005/05/050503104202.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) — An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Adorable Video of Baby Rhino and Lamb Friend Playing

Adorable Video of Baby Rhino and Lamb Friend Playing

Buzz60 (Oct. 20, 2014) — Gertjie the Rhino and Lammie the Lamb are teaching the world about animal conservation and friendship. TC Newman (@PurpleTCNewman) has the adorable video! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins