Featured Research

from universities, journals, and other organizations

Biologists Determine Genetic Blueprint Of Social Amoeba

Date:
May 5, 2005
Source:
University Of California - San Diego
Summary:
An international team that includes biologists at the University of California, San Diego has determined the complete genetic blueprint of Dictyostelium discoideum, a simple social amoeba long used by researchers as a model genetic system, much like fruit flies and laboratory mice, to gain a better understanding of human diseases.

Slug-like multicellular Dictyostelium.
Credit: Dirk Dormann, University of Dundee

An international team that includes biologists at UCSD has determined the complete genetic blueprint of Dictyostelium discoideum, a simple social amoeba long used by researchers as a model genetic system, much like fruit flies and laboratory mice, to gain a better understanding of human diseases.

Related Articles


The scientific details of this seven-yearlong genetic sequencing effort, which involved 97 scientists from 22 institutions in five countries, are contained in a paper featured on the cover of the May 5 issue of the journal Nature.

The international team’s achievement will have an immediate application for biomedical researchers, who can now mine the Dictyostelium genome for a host of genes that cause human disease, thus gaining a new and efficient way to study those human diseases with a simple organism in their laboratories.


For evolutionary biologists, the genetic blueprint of Dictyostelium, the first amoeba genome to be sequenced, has clarified the place that Dictyostelium occupies in the hierarchy of life.

“It is more closely related to fungi and animals than we had previously thought,” says Adam Kuspa, a professor of biochemistry and molecular biology at Baylor College of Medicine in Houston and a senior author of the Nature paper.

The discovery will also improve geneticists’ understanding of how the genes from Dictyostelium and other genetic model organisms have been conserved or adapted through evolution in humans and other organisms.

“The cells which gave rise to plants and animals had more types of genes available to them than are presently found in either plants or animals,” explains William Loomis, a professor of biology at UCSD and one of the key members of the international sequencing effort. “Specialization appears to lead to loss of genes as well as the modification of copies of old genes. As each new genome is sequenced, we learn more about the history and physiology of the progenitors and gain insight into the function of human genes.”

In 1989, Loomis and Kuspa, then a postdoctoral fellow in Loomis’ laboratory, initiated a critical portion of the effort when they began the arduous task of constructing a physical map of the genes located on the six chromosomes of Dictyostelium.

The scientists mapped the location of several hundred genes on those chromosomes based on landmarks that had been discovered over the years, then created a set of 5,000 large DNA clones, each about 200,000 nucleotide bases long, that proved useful for other researchers in assembling the genetic sequences of Dictyostelium’s genome. Another UCSD biologist involved in the genome effort, Christophe Anjard, an assistant project scientist in Loomis’ laboratory, analyzed families of Dictyostelium genes and uncovered relationships with these genes in both animals and plants.

Dictyostelium is used as a model organism for studying cell polarity, how cells move and the differentiation of tissues. It also exhibits many of the properties of white blood cells.

Three years ago, another team of UCSD biologists discovered that two genes that are used by Dictyostelium to guide the organism to food sources are also used to guide human white blood cells to the sites of infections and play a role in the spread of cancer. (see: http://ucsdnews.ucsd.edu/newsrel/science/mcchemo.htm )

Dictyostelium usually exists as a single cell organism that inhabits forest soil, consuming bacteria and yeast. When starved, however, the single cells come together, differentiate into tissues and become a true multicellular organism with a fruiting body composed of a stalk with spores poised on top. This increases its utility in a variety of studies.

“An organism’s relationship to humans depends on how related the proteins are that are found in the two cell types,” says Kuspa. “You can make direct analogies, or you could learn general principles about how cells regulate their behavior. Both things will apply in the studies we do.”

He and the other members of the international sequencing team found that there are more protein coding genes in the organism than they had thought and nearly twice as many as there are in fungi. Their unraveling of the genome also allowed Rolf Olsen, a postdoctoral fellow working in Loomis’ laboratory, to generate a tree of life and show that amoebozoa, the group to which Dictyostelium belongs, evolved from the common ancestor of eukaryotes (the group of organisms that contain all animals, plants, algae, protozoa, slime mold and fungi) before fungi. Dictyostelium has about 12,000 genes that produce a greater variety of proteins than the approximately 6,000 found in fungi. And its genes are more closely related to human genes than are the genes from fungi.

“That really speaks to how much we will relate the gene function information we find to humans,” Kuspa says. "It makes Dictyostelium a better model for looking for targets against which drugs can act.”

Key collaborators in the project at Baylor included Richard Gibbs and George Weinstock, co-directors of Baylor’s Human Genome Sequencing Center, and Richard Sucgang, an assistant professor of biochemistry. Baylor performed about one half of the sequencing work.

The project was funded by grants from the National Institute for Child Health and Development, Deutsche Forschungsgemeinschaft, the Medical Research Council and the European Union.

Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "Biologists Determine Genetic Blueprint Of Social Amoeba." ScienceDaily. ScienceDaily, 5 May 2005. <www.sciencedaily.com/releases/2005/05/050504225817.htm>.
University Of California - San Diego. (2005, May 5). Biologists Determine Genetic Blueprint Of Social Amoeba. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2005/05/050504225817.htm
University Of California - San Diego. "Biologists Determine Genetic Blueprint Of Social Amoeba." ScienceDaily. www.sciencedaily.com/releases/2005/05/050504225817.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins