Featured Research

from universities, journals, and other organizations

NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces

Date:
May 11, 2005
Source:
New York University
Summary:
Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Snapshots illustrating the products formed by the addition of an organic molecule (butadiene) to a silicon surface. Green spheres denote carbon, white spheres denote hydrogen, blue spheres denote silicon, grey spheres and blue surfaces denote centers of high electron density, and red spheres denote local positive charge.
Credit: Image courtesy of New York University

Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Mark Tuckerman, an associate professor in NYU's Department of Chemistry and its Courant Institute of Mathematical Sciences, along with graduate student Peter Minary and postdoctoral researcher Radu Iftimie, examined how a butadiene, a particular organic molecule, binds to a particular silicon surface using first-principles computer-based models (Iftimie is now an assistant professor at the University of Montreal, and Minary is a postdoctoral researcher at Stanford University).

The researchers were able to identify four principal products that a butadiene can form when binding to the particular silicon surface they studied. These products had been observed independently in experiments performed elsewhere. More importantly, the researchers were able to rationalize this product distribution with a unified mechanistic picture that addresses a long-standing controversy about the reactions they studied. This mechanism could be used to predict how other organic molecules will attach to the surface and what products might be expected.

The researchers also explored a process of importance in lithography, or surface patterning, wherein they examined how an organic molecule comes off a surface. The process is crucial to the production of computer chips because it requires superimposing surface patterns multiple times with pinpoint accuracy. Specifically, they "reverse engineered" an organic molecule using only their computer model that was found to undergo the reverse reaction--i.e., detachment from the surface--more easily than the original butadiene used in the attachment studies. This finding suggests that the reaction chemistry at the semiconductor surface can be controlled by custom designing or tailoring molecules that exhibit specific desired properties in the reactions they undergo.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces." ScienceDaily. ScienceDaily, 11 May 2005. <www.sciencedaily.com/releases/2005/05/050509102555.htm>.
New York University. (2005, May 11). NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2005/05/050509102555.htm
New York University. "NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces." ScienceDaily. www.sciencedaily.com/releases/2005/05/050509102555.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins