Featured Research

from universities, journals, and other organizations

NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces

Date:
May 11, 2005
Source:
New York University
Summary:
Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Snapshots illustrating the products formed by the addition of an organic molecule (butadiene) to a silicon surface. Green spheres denote carbon, white spheres denote hydrogen, blue spheres denote silicon, grey spheres and blue surfaces denote centers of high electron density, and red spheres denote local positive charge.
Credit: Image courtesy of New York University

Chemists at New York University have elucidated a mechanism by which organic molecules attach to semiconductor surfaces, a finding that has implications for the semiconductor industry. The industry has sought ways to exploit the attachment process for a variety of purposes. The findings, along with a review of the methodology employed in the study, appear in the latest issue of the Proceedings of the National Academy of Sciences and build on studies published by the same team in the Journal of the American Chemical Society.

Related Articles


Mark Tuckerman, an associate professor in NYU's Department of Chemistry and its Courant Institute of Mathematical Sciences, along with graduate student Peter Minary and postdoctoral researcher Radu Iftimie, examined how a butadiene, a particular organic molecule, binds to a particular silicon surface using first-principles computer-based models (Iftimie is now an assistant professor at the University of Montreal, and Minary is a postdoctoral researcher at Stanford University).

The researchers were able to identify four principal products that a butadiene can form when binding to the particular silicon surface they studied. These products had been observed independently in experiments performed elsewhere. More importantly, the researchers were able to rationalize this product distribution with a unified mechanistic picture that addresses a long-standing controversy about the reactions they studied. This mechanism could be used to predict how other organic molecules will attach to the surface and what products might be expected.

The researchers also explored a process of importance in lithography, or surface patterning, wherein they examined how an organic molecule comes off a surface. The process is crucial to the production of computer chips because it requires superimposing surface patterns multiple times with pinpoint accuracy. Specifically, they "reverse engineered" an organic molecule using only their computer model that was found to undergo the reverse reaction--i.e., detachment from the surface--more easily than the original butadiene used in the attachment studies. This finding suggests that the reaction chemistry at the semiconductor surface can be controlled by custom designing or tailoring molecules that exhibit specific desired properties in the reactions they undergo.


Story Source:

The above story is based on materials provided by New York University. Note: Materials may be edited for content and length.


Cite This Page:

New York University. "NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces." ScienceDaily. ScienceDaily, 11 May 2005. <www.sciencedaily.com/releases/2005/05/050509102555.htm>.
New York University. (2005, May 11). NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2005/05/050509102555.htm
New York University. "NYU Researchers Explain How Organic Molecules Bind To Semiconductor Surfaces." ScienceDaily. www.sciencedaily.com/releases/2005/05/050509102555.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins