Featured Research

from universities, journals, and other organizations

Penn Study Finds Direct Role For Glial Cells In Brain Cross-talk

Date:
October 17, 2005
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

Astrocytes, a non-neuronal cell of the brain, are responsible for coordinating neuronal networks.
Credit: Courtesy of Olivier Pascual and Philip Haydon, University of Pennsylvania School of Medicine, Department of Neuroscience

Researchers at the University of Pennsylvania School of Medicine have demonstrated that star-shaped glial cells in the brain called astrocytes are directly involved in regulating communication between neurons. A central finding of the study is that astrocytes modulate the level of a signaling molecule called adenosine, which is thought to be important in controlling wake-to-sleep transitions and epileptic seizures.

Related Articles


"This finding may cause neuroscientists to radically alter their view of the role of astrocytes as merely supportive to one of actively communicating with and instructing neurons," states senior author Philip G. Haydon, PhD, Professor of Neuroscience. "Astrocytes are not just the 'kitchen cells' of the brain, providing nutritional support, but instead also help the neurons talk to each other." Haydon and colleagues published their results in last week's issue of Science.

The central nervous system, which includes the brain and spinal cord, is composed of specialized cells called neurons that send out and receive chemical signals called neurotransmitters across a space called the synapse. This process results in transmission of a nerve impulse. Historically, the glial cell or astrocyte was considered to be a support cell and to play no active role in regulating nerve impulse transmission. However, recent research by Haydon and other investigators has indicated that glial cells do produce chemical transmitters called gliotransmitters and that these chemical signals are recognized by the neurons. The studies that have shown capability were conducted on isolated nerve cells or on slices of brain tissue.

In this most recent study, the researchers made genetic manipulations to glial cells in live mice, thus directly demonstrating how astrocytes function in the brain. The mice were engineered to produce a protein called SNARE in their astrocytes. When the SNARE protein was produced, the amount of adenosine decreased.

When adenosine accumulated, nerve impulses were suppressed and could not be transmitted across the synapse. This helps explain why high adenosine levels can suppress epileptic seizures.

In contrast, low levels of adenosine increased the transmission of nerve impulses. The modulation of neuronal activity through the regulation of the level of adenosine in the synapse may explain the nature of wake-to-sleep transitions during periods of drowsiness.

"The next step is to study the behavior of these mice during manipulation of adenosine levels in the brain," says Haydon.

The study was a collaboration between Haydon and Stephen Moss at Penn and Ken McCarthy, University of North Carolina, Chapel Hill. The lead author was Olivier Pascual, a post-doctoral fellow in Penn's Department of Neuroscience. Co-authors are Kristi Casper, Cathryn Kubera, Jing Zhang, Raquel Revilla-Sanchez, Jai-Yoon Sul and HajimeTakano.

This study was funded by the National Institute of Neurological Disorders and Stroke and the National Institute of Mental Health. This release and related images can also be found at: www.uphs.upenn.edu/news.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Penn Study Finds Direct Role For Glial Cells In Brain Cross-talk." ScienceDaily. ScienceDaily, 17 October 2005. <www.sciencedaily.com/releases/2005/10/051011000222.htm>.
University of Pennsylvania School of Medicine. (2005, October 17). Penn Study Finds Direct Role For Glial Cells In Brain Cross-talk. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2005/10/051011000222.htm
University of Pennsylvania School of Medicine. "Penn Study Finds Direct Role For Glial Cells In Brain Cross-talk." ScienceDaily. www.sciencedaily.com/releases/2005/10/051011000222.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins