Featured Research

from universities, journals, and other organizations

Wright Brothers Upstaged! Dinos Invented Biplanes

Date:
October 18, 2005
Source:
Geological Society of America
Summary:
The evolution of airplanes from the Wright Brothers' first biplanes to monoplanes was an inadvertent replay of the much earlier evolution of dinosaur flight, say two dino flight experts. According to paleontologist Sankar Chatterjee and retired aeronautical engineer R.J. Templin, a small early Chinese dinosaur called Microraptor gui used a two-level, biplane wing configuration to fly from tree to tree in the early Cretaceous.

A biplane glider Microraptor gui from China compared with the Wright 1903 Flyer. Microraptor invented the biplane 125 million years ago.
Credit: Courtesy : Jeff Martz

The evolution of airplanes from the Wright Brothers' first biplanes to monoplanes was an inadvertent replay of the much earlier evolution of dinosaur flight, say two dino flight experts.

According to paleontologist Sankar Chatterjee and retired aeronautical engineer R.J. Templin, a small early Chinese dinosaur called Microraptor gui used a two-level, biplane wing configuration to fly from tree to tree in the early Cretaceous. Among the evidence for the early biplane is that Microraptor had unmistakable flight feathers on its hind limbs as well as on its wings, says Chatterjee, a distinguished professor at Texas Tech University in Lubbock. The Chinese paleontologists who first reconstructed Microraptor had guessed that its four wings were used in tandem, similar to those of dragonfly.

Chatterjee presented the new biplane flight findings on Sunday, 16 October, at the Annual Meeting of the Geological Society of America in Salt Lake City.

"The most unusual thing is that they have flight feathers not only on the hand section, but also on foot," said Chatterjee. Flight feathers differ noticeably from other feathers in that they are asymmetrical with interlocking barbules to keep their shape. The leading edge of each long feather was narrower than the trailing edge, which helped streamline the body in flight. The hooked, interlocking barbs gave strength and flexibility to the feather and prevented air from passing through it in flight.

Some present-day birds, especially raptors as well as the earliest Jurassic bird Archaeopteryx, also have (or had) feathers on their legs, Chatterjee says. But these are not flight feathers and appear adapted to streamline the legs during catching and carrying prey so they don't interfere with flight.

Another key element to discovering Microraptor's flight secrets was setting some realistic limitations on how the dinosaur could move its hindlimbs -- something that was initially overlooked by Chinese researchers who found the fossil. Chatterjee and Templin studied its anatomy and found that like any dinosaurs, Microraptor held their hindlimbs in erect, vertical plane, permitting forward and backward motion.

"The problem we faced is that the legs of Microraptor, like on any dinosaur, could not be splayed sideways," as the Chinese paleontologists assumed. That means Microraptor could not have extended its rear limbs to form a wing directly behind the front wing. More likely, and more aerodynamically stable, would have been a rear wing that was held lower than the front wing -- what from the side would look like a staggered biplane configuration, Chatterjee explains.

Chatterjee and Templin fed Microraptor's flight data into a computer simulation that they have previously used to successfully analyze the flying abilities of pterosaurs and Archaeopteryx. Based on the aeronautical analysis, it appears that Microraptor flights looked rather like those seen today among some "monoplane" forest birds -- something called undulating phugoid gliding, Chatterjee said. In other words, Microraptor launched from a high branch and dove off, falling head-first until it reached a speed that created lift on its wings. With that lift the feathered dino then swooped upwards and landed in the branches of another tree without having to flap its wings and expend muscular energy.

"The biplane wing configuration was probably a very first experiment in nature," says Chatterjee of the early flying technique, which was also used by another feathered dinosaur from China, Pedopenna, he said. Archaeopteryx achieved fully powered flight with monoplane configuration, as its wing became even larger than those of Microraptor, but foot feathers were lost.

"It is intriguing to contemplate that perhaps avian flight, like aircraft evolution, went through a biplane stage before the monoplane was introduced, said Chatterjee. "It seems likely that Microraptor invented the biplane 125 million years before the Wright 1903 Flyer."

The discovery of Microraptor and other small, exquisitely preserved feathered dinosaurs from China also helps to settle a century-old controversy over whether avian flight began in trees (trees-down theory) or on the ground (ground-up theory). These fossils show various transitional stages -- from wingless, tree-dwelling theropod dinosaurs to fully winged, active flyers, Chatterjee said.

The central theme of the trees-down theory is that gravity was the source of energy: a small climbing dinosaur first parachuted down, then began to stay aloft longer by gliding, and finally acquired powered flight. As those abilities developed, feathers became larger and more specialized, providing greater lift and thrust. The Chinese feathered dinosaurs show these transitional stages of flight.

In contrast, the ground-up theory has a theropod struggling toward flight directly from the ground, against gravity, without any gliding stage. Such long feathers around the feet would make it hard for Microraptor to run on the ground, says Chatterjee, supporting the idea that it was a tree dweller, thus reinforcing the trees-down theory.

###

The Feathered Dinosaur Microraptor: Its Biplane Wing Planform and Flight Performance View abstract: http://gsa.confex.com/gsa/2005ESP/finalprogram/abstract_88952.htm


Story Source:

The above story is based on materials provided by Geological Society of America. Note: Materials may be edited for content and length.


Cite This Page:

Geological Society of America. "Wright Brothers Upstaged! Dinos Invented Biplanes." ScienceDaily. ScienceDaily, 18 October 2005. <www.sciencedaily.com/releases/2005/10/051018071921.htm>.
Geological Society of America. (2005, October 18). Wright Brothers Upstaged! Dinos Invented Biplanes. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2005/10/051018071921.htm
Geological Society of America. "Wright Brothers Upstaged! Dinos Invented Biplanes." ScienceDaily. www.sciencedaily.com/releases/2005/10/051018071921.htm (accessed September 30, 2014).

Share This



More Fossils & Ruins News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

2,000 Year Old Pre-Inca Cloak on Display in Lima

2,000 Year Old Pre-Inca Cloak on Display in Lima

AFP (Sep. 27, 2014) A 2,000 year-old Pre-Inca cloak that is believed to represent an agricultural calendar of the Paracas culture is on display in Lima. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
Original Mozart Sonata Manuscript Found in Budapest

Original Mozart Sonata Manuscript Found in Budapest

AFP (Sep. 26, 2014) Considered lost for over two centuries, the original manuscript of one of the most famous works of Mozart's Sonata in A major has been uncovered in a library in Budapest. Duration: 01:04 Video provided by AFP
Powered by NewsLook.com
Underground Art Reveals WW1 Soldiers' Hopes and Fears

Underground Art Reveals WW1 Soldiers' Hopes and Fears

AFP (Sep. 25, 2014) American doctor and photographer Jeff Gusky reveals the underground quarries used by the soldiers of World War One, and the artwork they left behind which illustrates their hopes and fears. Duration: 02:15 Video provided by AFP
Powered by NewsLook.com
Raw: Ice Age Wooly Mammoth Remains for Sale

Raw: Ice Age Wooly Mammoth Remains for Sale

AP (Sep. 23, 2014) A rare, well-preserved skeleton of a woolly mammoth is going on sale at Summers Place Auctions hope the 11.5-foot tall, almost intact specimen will fetch between $245,000 to $409,000. (Sept. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins