Featured Research

from universities, journals, and other organizations

Tiny Worms Paving Way For Better Anesthetics

Date:
October 23, 2005
Source:
Medical College of Georgia
Summary:
Ten genes that may make patients more or less susceptible to a common anesthetic agent have been identified by researchers using tiny worms and sophisticated technology that eliminates the activity of individual genes.

Dr. Steffen E. Meiler (left), vice chair of research for the MCG Department of Anesthesiology and Perioperative Medicine, and Dr. Aamir Nazir, geneticist.
Credit: Photo by Phil Jones

Ten genes that may make patients more or less susceptible to a common anesthetic agent have been identified by researchers using tiny worms and sophisticated technology that eliminates the activity of individual genes.

“We are anesthetizing 25 million patients a year in the United States alone; we put them to sleep and wake them up and we still don’t know a lot about why it happens,” said Dr. Steffen E. Meiler, vice chair of research for the Medical College of Georgia Department of Anesthesiology and Perioperative Medicine and a study author. “A lot of research has been done but the main mechanisms of how these volatile anesthetics (volatility means the anesthetics move easily from liquid to gaseous form) work have really alluded us.”

Drs. Meiler, Aamir Nazir and their colleagues are taking advantage of advances in genomics and technology to begin to identify those mechanisms with the ultimate goal of better drugs.

“Eventually what we would like to do is design more specific drugs,” says Dr. Meiler of the work being presented during the American Society of Anesthesiologists annual meeting Oct. 22-26 in Atlanta. “The principal question is how can we design anesthetic drugs that have the desired effect of rendering a patient unconscious during surgery without affecting other brain functions that lead to adverse effects,” he says.

Critical pieces have come together to make the studies possible including the relatively recent finding that volatile anesthetics interact with proteins. Now that they know they need to look at proteins, sophisticated RNA interference technology enables researchers to do so by stopping the usual process in which information encoded by a singular gene is transformed into a cellular protein.

Tiny C. elegans, free-living soil nematodes that share 50 percent to 60 percent of their genes with humans and are the first study animals to have their genome decoded and sequenced, have given the scientists a manageable model for knocking out select genes, giving anesthetics and measuring the results.

The researchers started their work with the 637 genes known to be expressed in the nervous system of the C. elegans. They designed a tiny gas chamber to deliver Isofluran to the worms. Not unlike earlier days in anesthesiology – before sophisticated monitoring such as the bispectral index system that measures brainwave activity to determine a patient’s level of consciousness during surgery – the researchers assessed the anesthetic effect from just watching their subjects. They compared the movement of anesthetized worms to controls.

“This is the best genetic model system,” says Dr. Nazir. “The worms we study are about the same age and carry the same genes. If there is a difference between the control and the knock-down mutant, we know that particular gene has something to do with the anesthetic, he says. Using this method, they initially identified 37 candidate genes.

Next, they applied a sophisticated quantification system, developed in conjunction with the California Institute of Technology, that allows 144 precise, objective measures of how far anesthetized worms and the controls travel, including speed, top speed, roaming range, track patterns and other complex behaviors.

That systematic analysis narrowed the field to 10 genes – nine that are hypersensitive and one that is resistant – that are biological modifiers of the anesthetic effects of drugs, Dr. Nazir says.

“These are modifier genes that influence the effect, the degree, the extent of the anesthetic effect,” says Dr. Meiler. “We cannot yet say these are direct targets of volatile anesthetics. That is to be tested in another series of studies.”

Rather, these first steps have shown the researchers their approach works, so they are moving toward a genome screen in these tiny worms that includes genes whose function is unknown.

Drs. Zhong Chen, research associate, and C. Alvin Head, chair of the MCG Department of Anesthesiology, are co-authors on the study.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Tiny Worms Paving Way For Better Anesthetics." ScienceDaily. ScienceDaily, 23 October 2005. <www.sciencedaily.com/releases/2005/10/051023120512.htm>.
Medical College of Georgia. (2005, October 23). Tiny Worms Paving Way For Better Anesthetics. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2005/10/051023120512.htm
Medical College of Georgia. "Tiny Worms Paving Way For Better Anesthetics." ScienceDaily. www.sciencedaily.com/releases/2005/10/051023120512.htm (accessed September 20, 2014).

Share This



More Health & Medicine News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins