Featured Research

from universities, journals, and other organizations

Engineers Discover Why Toucan Beaks Are Models Of Lightweight Strength

Date:
November 30, 2005
Source:
University of California - San Diego
Summary:
In a paper to be published Dec. 1 in Acta Materialia, researchers report that the secret to the toucan beak's lightweight strength is an unusual bio-composite. The interior of the beak is rigid "foam" made of bony fibers and drum-like membranes sandwiched between layers of keratin, the protein that makes up fingernails, hair, and horn.

UCSD materials scientists discovered that the lightweight strength of the Toco Toucan's beak is due to a matrix of bony fibers and drum-like membranes sandwiched between an outer layer of keratin, the protein that makes up fingernails, hair, and horn.
Credit: Image courtesy of University of California - San Diego

As a boy growing up in Brazil 40 years ago, Marc A. Meyers marveled at the lightweight toughness of toucan beaks that he occasionally found on the forest floor. Now a materials scientist and professor of mechanical and aerospace engineering at UCSD's Jacobs School of Engineering, Meyers said makers of airplanes and automobiles may benefit from the first ever detailed engineering analysis of toucan beaks conducted in his lab.

“Our computer modeling shows that the beak is optimized to an amazing degree for high strength and very little weight,” said Meyers. “It’s almost as if the toucan has a deep knowledge of mechanical engineering.”
In a paper to be published Dec. 1 in Acta Materialia, Meyers and graduate students Yasuaki Seki and Matthew S. Schneider reported that the secret to the toucan beak's lightweight strength is an unusual bio-composite. The interior of the beak is rigid "foam" made of bony fibers and drum-like membranes sandwiched between outer layers of keratin, the protein that makes up fingernails, hair, and horn. Just as the hook-shaped barbs on cockleburs inspired the development of Velcro, Meyers said the avian bio-composite could inspire the design of ultra-light aircraft and vehicle components with synthetic foams made with metals and polymers.

"The big surprise was our finding that the beak's sandwich structure also behaves as a high energy impact-absorption system," said Meyers. "Panels that mimic toucan beaks may offer better protection to motorists involved in crashes."

Toucans are highly social, noisy residents of rainforests in the Amazon, although the birds live as far north as Mexico. They use their extremely large and often brightly colored beaks for a variety of purposes, from gathering fruit from the tips of tree branches, to defending themselves.

Bird beaks are typically either short and thick or long and thin. The Meyers team decided to prospect for a novel material in toucan beaks because they are both long and thick. Emerald Forest Bird Gardens, a California breeder of exotic birds, provided beaks from toucans that had died from natural causes to Meyers's team. They analyzed the beaks' density, stiffness, hardness, and response to compression and stretching. They also examined the beaks with a scanning electron microscope.

The beak’s interior is a highly organized matrix of stiff cancellous bone fibers that looks as if it was dipped into a soapy solution and dried, generating drum-like membranes that interconnect the fibers. The result is a solid “foam” of air-tight cells that gives the beak additional rigidity.

"The beak is mostly air," said Meyers. "While the inner part of human bone also contains cancellous bone, we don't have the foam interconnections, which produce a much stronger structure with very little additional weight."

Like a house covered by a shingled roof, the foam is covered with overlapping keratin tiles, each about 50 micrometers in diameter and 1 micrometer thick, which are glued together to produce sheets.

The study in Acta Materialia also noted a hollow region extending about half the length of the upper and lower beaks. "When we did the calculations, we discovered that there are only very insignificant mechanical stresses in the center of the beak at the position of the hollow areas," said Meyers. "This is why I jokingly tell my students that toucans have a deep knowledge of mechanics. They don't bother adding structural support in a part of the beak that doesn't really need it."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Engineers Discover Why Toucan Beaks Are Models Of Lightweight Strength." ScienceDaily. ScienceDaily, 30 November 2005. <www.sciencedaily.com/releases/2005/11/051130084855.htm>.
University of California - San Diego. (2005, November 30). Engineers Discover Why Toucan Beaks Are Models Of Lightweight Strength. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2005/11/051130084855.htm
University of California - San Diego. "Engineers Discover Why Toucan Beaks Are Models Of Lightweight Strength." ScienceDaily. www.sciencedaily.com/releases/2005/11/051130084855.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins