Featured Research

from universities, journals, and other organizations

Where 'Jumping Genes' Fear To Tread

Date:
January 5, 2006
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists from the University of Queensland report in the journal Genome Research that large segments of the human genome are conspicuously devoid of ubiquitous mobile DNA elements called transposons. The locations of these regions are highly conserved among mammalian species and are enriched in genes crucial for the regulation of developmental processes.

Scientists from the University of Queensland report in the journal Genome Research that large segments of the human genome are conspicuously devoid of ubiquitous mobile DNA elements called transposons. The locations of these regions are highly conserved among mammalian species and are enriched in genes crucial for the regulation of developmental processes.

Related Articles


Transposons, often called "jumping genes," are DNA sequences that have the capacity to move from one chromosomal site to another. More than three million copies of transposons have accumulated in humans throughout the course of evolution and now comprise an estimated 45% of the total DNA content in the human genome.

These mobile genetic elements are scattered throughout the human genome -- separated, on average, by only 500 base pairs. But Dr. John Mattick's laboratory at the University of Queensland, Australia, identified long tracks of genomic segments (greater than 10 kilobases in length) that lack transposable elements. His team identified 860 such sequences in humans, 993 in mice, and 559 in opossums. They named these segments TFRs, or transposon-free regions.

"Strikingly," says Mattick, "many TFRs in the human genome occur in the same position in the mouse and opossum genomes, despite the fact that transposons entered each lineage independently, after each species diverged from a common ancestor. It appears that many TFRs are evolutionarily conserved features that existed prior to -- and have been largely maintained since -- the divergence of eutherian mammals and marsupials approximately 170 million years ago."

The opossum was chosen for inclusion in the analysis because it is a marsupial that has a similar load of transposable elements compared to mice and humans but is evolutionarily distant from the two species. In contrast, the genomes of chicken and fish, which diverged from humans more than 300 million years ago, do not have a significant density of transposons.

Given the strong evolutionary conservation of the TFRs, Mattick's group hypothesized that they are regions of significant biological importance. Upon further characterizing the TFRs, they discovered that many (85%) overlapped at least one annotated gene and that almost all (94%) overlapped at least one known RNA transcript. In addition, the TFRs were enriched in microRNAs, in genes that encode proteins with putative DNA-binding activity, and in genes that are involved in developmental processes. Another striking feature of TFRs was that they are associated with ultra-conserved regions, or genomic segments longer than 200 base pairs with 100% identity between human, mouse, and rat. All of these observations strongly support an important role for TFRs in critical biological processes.

"The majority of the TFRs lie outside of protein-coding sequences, so they presumably represent regions of regulatory information or RNA transcripts that cannot be disrupted. However, it's difficult to explain mechanistically the requirement of 10 or more kilobases of uninterrupted sequence in terms of the current paradigms of transcriptional regulation," explains Mattick. "It appears that TFRs might be the passive signatures of one or more poorly understood mechanisms of gene regulation that operate in higher organisms, suggesting a wider role for noncoding sequences than has hitherto been appreciated."

The work was conducted under Mattick's guidance by graduate students Cas Simons and Michael Pheasant, as well as by Dr. Igor Makunin, a postdoctoral researcher.



Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "Where 'Jumping Genes' Fear To Tread." ScienceDaily. ScienceDaily, 5 January 2006. <www.sciencedaily.com/releases/2006/01/060105084032.htm>.
Cold Spring Harbor Laboratory. (2006, January 5). Where 'Jumping Genes' Fear To Tread. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2006/01/060105084032.htm
Cold Spring Harbor Laboratory. "Where 'Jumping Genes' Fear To Tread." ScienceDaily. www.sciencedaily.com/releases/2006/01/060105084032.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins