Featured Research

from universities, journals, and other organizations

In Bacterial Diversity, Amazon Is A 'Desert'; Desert Is An 'Amazon'

Date:
January 25, 2006
Source:
Duke University
Summary:
Ironically, in the diversity of soil bacteria, the otherwise species-rich Amazon is a more like a desert, while the arid desert is a teeming microbial Amazon, researchers have found. Their first-ever continental-scale genetic survey of soil bacteria revealed that the primary factor that seems to govern the diversity of soil bacteria is soil pH. Thus, the acidic soils of topical forests harbor fewer bacterial species than the neutral soils of deserts.

Ironically, in the diversity of soil bacteria, the otherwise species-rich Amazon is a more like a desert, while the arid desert is a teeming microbial Amazon, researchers have found. Their first-ever continental-scale genetic survey of soil bacteria revealed that the primary factor that seems to govern the diversity of soil bacteria is soil pH. Thus, the acidic soils of topical forests harbor fewer bacterial species than the neutral soils of deserts.

The researchers said that, since soil bacteria play a fundamental role in a vast array of ecological processes, their survey constitutes an initial step in a new research pathway to understanding that role.

Biologists Noah Fierer and Robert Jackson published their findings in the Early Online Edition of the Proceedings of the National Academy of Sciences the week of Jan. 9, 2006. Their work was sponsored by the National Science Foundation and the Mellon Foundation. Fierer, a former post-doctoral scientist at Duke University, is at the University of Colorado; and Jackson is in the Department of Biology and the Nicholas School of the Environment and Earth Sciences at Duke.

"Although soil bacteria have been studied for centuries, fundamental biological questions remain unanswered," said Fierer. "We probably know more about the organisms in the deepest ocean trenches than we know about the organisms living in soil in our backyards.

"We step on soil every day, but few people realize that 'dirt' supports a complex community of microorganisms that plays a critical role on Earth, he said. "The number of bacterial species in a spoonful of soil is likely to exceed the total number of plant species in all of the United States."

According to Jackson, "Microbes are very important for most of the critical processes in nature. They are extremely important for the cycles that make nutrients available to plants and animals; and for much of the respiration that returns carbon back to the atmosphere as carbon dioxide. They also give off most of the important trace gases in our atmosphere like methane.

"Given this importance, it was really surprising to us that no one had tried to systematically explore the pattern of diversity of soil bacteria on a continent-wide scale. Part of the reason is such a survey is technologically challenging, and it's logistically challenging as well," he said.

In their survey, Fierer and Jackson collected 98 soil samples from across North and South America. They chose research sites in which considerable scientific data had already been collected that would enable them to assess the role of factors such as temperature and rainfall on diversity. These included many of the Long-Term Ecological Reserves in North America, supported by the National Science Foundation. While some of the samples were provided by scientists conducting studies in such research areas, other samples required remote treks through the Amazonian jungle, said Jackson.

The researchers assessed the microbial species diversity of their samples by performing "DNA fingerprinting" that would reveal the diversity of a particular kind of DNA called ribosomal DNA. This DNA is known to differ considerably among bacterial species, serving as a type of genetic "bar code" that can be used to differentiate species. While the measure did not tell the researchers how many microbial species existed in the samples, it did give them a comparative measure of such diversity among the samples, said Jackson. The analyses revealed large differences among the samples in terms of diversity. The scientists then correlated that diversity with environmental factors, including latitude, temperature and soil pH.

"As biologists and ecologists, the factors that we think of typically as controlling plant and animal diversity didn't seem to correlate with the diversity of microbes," said Jackson. "Instead, the factor that correlated best with diversity was the pH of the soil they were growing in. It does make sense, since every biologist knows that when you culture microorganisms in the laboratory, the diversity and the health of those organisms tends to decrease in more extreme pHs." However, Jackson did not rule out the possibility of microbial "hot spots" that their broad survey might have missed.

Added Fierer, "These findings also suggest that soils with similar levels of acidity, even if those soils are thousands of miles apart, have similar bacterial communities."

Jackson emphasized that "This is really just a first step to a better understanding of what controls microbial diversity around the world. Such understanding will offer important insights into the many processes soil microorganisms control -- including the carbon cycle of decomposition of organic matter and the nitrogen-fixing cycle -- both of which free nutrients for plants. Also, microbes control emissions of methane and other gases, many of which are important greenhouse gases," he said.



Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Cite This Page:

Duke University. "In Bacterial Diversity, Amazon Is A 'Desert'; Desert Is An 'Amazon'." ScienceDaily. ScienceDaily, 25 January 2006. <www.sciencedaily.com/releases/2006/01/060125084759.htm>.
Duke University. (2006, January 25). In Bacterial Diversity, Amazon Is A 'Desert'; Desert Is An 'Amazon'. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2006/01/060125084759.htm
Duke University. "In Bacterial Diversity, Amazon Is A 'Desert'; Desert Is An 'Amazon'." ScienceDaily. www.sciencedaily.com/releases/2006/01/060125084759.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins