Featured Research

from universities, journals, and other organizations

New Images Capture Virus In Extraordinary Detail

Date:
February 14, 2006
Source:
Massachusetts Institute of Technology
Summary:
Fifty years after MIT researchers pioneered the use of electron microscopy to study viruses, MIT scientists have helped produce the most detailed images yet of the tiny infectious agents. The images show for the first time a virus poised to inject its genetic material into a host cell.

Structure of epilson15 bacteriophage, a virus that infects Salmonella. One end of the DNA genome (blue) is poised for injection into a host cell.
Credit: Photo courtesy / Wah Chiu

Fifty years after MIT researchers pioneered the use of electron microscopy to study viruses, MIT scientists have helped produce the most detailed images yet of the tiny infectious agents.

Related Articles


The images, which show for the first time a virus poised to inject its genetic material into a host cell, grace the cover of the Feb. 2 issue of Nature.

Scientists have known for decades that viruses infect cells by injecting their genetic material, either DNA or RNA, into host cells, but even with electron microscopy, "we could never see the details of that aspect of it," said Jonathan King, an MIT professor of biology and one of the authors of the paper.

The researchers, led by Wen Jiang and Wah Chiu of the National Center for Macromolecular Imaging at Baylor College of Medicine, focused on viruses that infect bacteria, known as bacteriophages. Their paper diagrams the structure of a virus that infects Salmonella bacteria.

The photographs clearly show a long coil of DNA dangling inside the viral shell, waiting to be ejected via a protein channel just inside the shell exterior.

"Now you can see the end of the DNA. You can see the cylinder holding it, poised to go into the cell," said King.

To create the detailed images, the researchers photographed about 15,000 virus particles and ran them through a complex computer program that compared the photographs and constructed a 3-D model based on common features shared by the images.

The researchers also improved image quality by rapidly freezing the viruses before photographing them. The amorphous ice that forms as a result of the rapid freezing protects and preserves the virus structure, unlike regular crystallized ice, King said.

This project builds on a long legacy of viral research at MIT, King said. In 1969, MIT Professor Salvador Luria shared the Nobel Prize in physiology or medicine with Max Delbruck and Alfred Hershey for work on the genetic structure and replication mechanisms of viruses.

Luria, who came to MIT in 1959, was the first scientist to show the structure of bacteriophages.

"That really brought these bacterial viruses to the fore, and they've continued to be important for half a century," King said.

Bacteriophages were used in crucial experiments showing that DNA is the genetic material and determining that translation of genetic material into proteins is based on a triplet code.

Luria's legacy at MIT's biology department is carried on today, said King. Shortly after World War II, the Institute got one of the first electron microscopes in the United States, and Luria molded the direction of the department, said King, who arrived at MIT in 1970 after working with Delbruck at Caltech.

"It was (Luria's) appointment that led to the department having its current character, which is a leader in molecular biology," King said.

MIT research scientist Peter Weigele is also an author on the imaging paper.

###

Funding for the imaging project was provided by the National Institutes of Health and the Robert Welch Foundation. The electron microscope images were taken at the National Center for Macromolecular Imaging at Baylor College of Medicine.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "New Images Capture Virus In Extraordinary Detail." ScienceDaily. ScienceDaily, 14 February 2006. <www.sciencedaily.com/releases/2006/02/060213101846.htm>.
Massachusetts Institute of Technology. (2006, February 14). New Images Capture Virus In Extraordinary Detail. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/02/060213101846.htm
Massachusetts Institute of Technology. "New Images Capture Virus In Extraordinary Detail." ScienceDaily. www.sciencedaily.com/releases/2006/02/060213101846.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins