Featured Research

from universities, journals, and other organizations

Gene Breakthrough Heralds Better Prospect For Malaria Solution

Date:
July 25, 2006
Source:
University of Bath
Summary:
Scientists have made a major breakthrough in understanding the genetics of the insect parasite that is being targeted by researchers as a way of preventing the spread of malaria.

The image shows a fluorescent microscope image of a Drosophila embryo infected with Wolbachia. The embryo is about 0.5 mm long.
Credit: Image courtesy of University of Bath

Scientists have made a major breakthrough in understanding the genetics of the insect parasite that is being targeted by researchers as a way of preventing the spread of malaria.

Related Articles


Wolbachia bacteria are parasites that infect as many as 80 per cent of the world’s insects and manipulate reproduction in their hosts in order to improve their own transmission.

In species including the fruit fly and mosquito, they do this by altering the sperm of infected males to prevent them from successfully reproducing with uninfected females.

Females infected with Wolbachia produce, on average, more offspring than uninfected females.

This is because they can successfully mate with any male in the population, whereas uninfected females are restricted to uninfected males. As Wolbachia is maternally transmitted, this has the effect of spreading the infection through the insect population.

Researchers around the world have secured millions in research funding to help develop malaria control strategies that use genetically modified Wolbachia that would spread through mosquito populations and carry genes that make their mosquito hosts unable to transmit the plasmodium parasite that cause malaria.

For the first time, in new research published in the journal Genetics, scientists from the University of Bath (UK) and the University of Chicago (USA) have identified two of the genes that Wolbachia manipulates when it infects the fruit fly Drosophila simulans.

“This is a major breakthrough in our understanding of the genetic basis of Wolbachia infection,” said Dr Ben Heath, from the Department of Biology & Biochemistry at the University of Bath.

“In recent years there has been great interest in using transgenic Wolbachia as a way of modifying natural populations of insects such as mosquitoes which transmit malaria.

“However this would always be difficult to achieve without a full understanding of the genetics of how Wolbachia interacts with its host insect.

“Our discovery of two of the fruit fly genes manipulated by Wolbachia sheds light on this process, and we should now be able to develop a clearer picture of exactly how Wolbachia manipulate the reproductive process in a variety of its hosts.

“Part of the problem in studying Wolbachia is that it lives inside the cells of its host insect and cannot effectively be studied on its own because it needs the cellular machinery and materials it gets from its host to survive.

“Another difficulty is that the changes it makes in the development of sperm are so subtle that they can be difficult to trace.”

In their research the scientists compared the genes that were being expressed – switched on - in infected and uninfected male fruit flies. By subtracting one from the other, they were left with the genes that were being expressed as a result of the Wolbachia infection.

One of the genes they identified, called zipper, is well known to scientists but has never been associated with Wolbachia infection before.

“Infected males have increased expression of their zipper gene compared to those that are uninfected,” said Dr Tim Karr, also from the University of Bath, who led the research.

“We were then able to work with transgenic flies which express the zipper gene more when warmed up slightly for periods of one hour during their development.

“This doesn’t harm the flies and provides an opportunity to mimic the effect of Wolbachia in fruit flies that don’t carry the bacteria.

“The zipper gene identified by the scientists also interacts with a second gene called lgl which is responsible for polarity within the cell and this becomes important when a cell divides into two different cells, such as when stem cells develop into sperm.

“By affecting the balance between these genes, it appears Wolbachia can promote cytoplasmic incompatibility by modifying the sperm of infected males.

“This prevents the sperm from being compatible with any egg from a female not infected with Wolbachia and results in sterility.

“However when infected males mate with infected females, the Wolbachia in the egg finds a way of correcting the modification to sperm and allows fertilization and normal development to continue.”

The researchers are now looking at the mechanisms present in other insect species with different levels of cytoplasmic incompatibility

In other insects Wolbachia infection has diverse and often dramatic results which all cause an increase in Wolbachia transmission for the simple reason that these bacteria are only transmitted through the maternal line, from mother to daughter.

In two–spot ladybirds Wolbachia kill male offspring leaving the surviving sisters to eat the bodies of their dead brothers, in woodlice, infected males are turned into females, and infected parasitic wasps give birth without reproducing.

These reproductive effects are what made Wolbachia so fascinating to biologists in the first place and now they may also provide new ways of tackling insect-bourne diseases such as malaria.

The research was funded by the Biotechnology and Biological Sciences Research Council (UK), the Royal Society (UK) and the National Science Foundation (USA).


Story Source:

The above story is based on materials provided by University of Bath. Note: Materials may be edited for content and length.


Cite This Page:

University of Bath. "Gene Breakthrough Heralds Better Prospect For Malaria Solution." ScienceDaily. ScienceDaily, 25 July 2006. <www.sciencedaily.com/releases/2006/07/060725084640.htm>.
University of Bath. (2006, July 25). Gene Breakthrough Heralds Better Prospect For Malaria Solution. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/07/060725084640.htm
University of Bath. "Gene Breakthrough Heralds Better Prospect For Malaria Solution." ScienceDaily. www.sciencedaily.com/releases/2006/07/060725084640.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins