Featured Research

from universities, journals, and other organizations

Worker Ants Store Fat To Share With Colony Members During Times Of Need

Date:
July 27, 2006
Source:
University of Chicago Press Journals
Summary:
In a fascinating new study, researchers explore the ability of ants to store excess fat and pass it to colony members through lipid-rich oral secretions or unfertilized eggs. For perennial organisms, such as ant colonies, investing heavily in nutrient stores when food availability is high is a potential bet-hedging strategy for dealing with times of famine.

Desert carpetner ants store excess fat and pass it to colony members through lipid-rich oral secretions or unfertilized eggs.
Credit: Alex Wild

In a fascinating new study from the September/October 2006 issue of Physiological and Biochemical Zoology, Daniel A. Hahn (University of Florida) explores the ability of ants to store excess fat and pass it to colony members through lipid-rich oral secretions or unfertilized eggs. For perennial organisms, such as ant colonies, investing heavily in nutrient stores when food availability is high is a potential bet-hedging strategy for dealing with times of famine.

Related Articles


"Understanding the regulation of nutrient reserves, particularly fat storage, at the individual and colony levels is critical to understanding both the division of labor characteristics of social insect colonies and the evolution of important colony life-history traits such as the timing of reproduction, founding mode, and over-wintering behaviour," explains Hahn.

In order to better understand how individual fat storage tactics translated into colony-level resources, Hahn captured queens of different species and reared colonies under controlled laboratory conditions in nests for two years, feeding the ants a combination of frozen cockroach and moth eggs, mixed with honey, vitamins, and salt. He then sampled five colonies each of the two different species, and found that, despite similar environments, darker workers and soldiers stored more fat per unit of lean mass than lighter ants did, but the lighter colony involved a greater proportion of soldiers in storage.

"Storing more fat per unit lean mass has been well documented as a tactic for increasing fat storage during ontogeny among colonies of a number of ant species, and now has been shown to contribute to between-species differences as well," Hahn writes. "Differences in individual-level storage tactics between the two desert species could lead to significant behavioral differences, perhaps in the rate that individuals progress through behavioral development, or in their motivation to forage or defend their nests."

Since 1928, Physiological and Biochemical Zoology has presented original, current research in environmental, adaptational, and comparative physiology and biochemistry.

Hahn, Daniel A. "Two closely-related species of desert carpenter ant differ in individual-level allocation to fat storage," Physiological and Biochemical Zoology 79:5.


Story Source:

The above story is based on materials provided by University of Chicago Press Journals. Note: Materials may be edited for content and length.


Cite This Page:

University of Chicago Press Journals. "Worker Ants Store Fat To Share With Colony Members During Times Of Need." ScienceDaily. ScienceDaily, 27 July 2006. <www.sciencedaily.com/releases/2006/07/060727100749.htm>.
University of Chicago Press Journals. (2006, July 27). Worker Ants Store Fat To Share With Colony Members During Times Of Need. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2006/07/060727100749.htm
University of Chicago Press Journals. "Worker Ants Store Fat To Share With Colony Members During Times Of Need." ScienceDaily. www.sciencedaily.com/releases/2006/07/060727100749.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins