Featured Research

from universities, journals, and other organizations

Structure Of Key Enzyme In Plague Bacterium Found

Date:
August 18, 2006
Source:
National Institute of Standards and Technology
Summary:
NIST researchers have solved the structure of a key enzyme, class IV adenylyl cyclase, from the bacterium responsible for plague, finding that it has a highly unusual configuration. The results may shed light both on how the bacterium kills and on fundamental cell signaling processes.

Ribbon rendering of the structure of AC-IV in Yersina pestis as determined at NIST. The enzyme is a dimer (two identical subunits around a vertical axis), and each of the two subunits forms a central barrel made of eight strands surrounded by short helices. The active site is believed to lie inside the barrel.
Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have solved the structure of a key enzyme from the bacterium responsible for plague, finding that it has a highly unusual configuration. The results may shed light both on how the bacterium kills and on fundamental cell signaling processes.

The NIST team determined the three-dimensional shape of class IV adenylyl cyclase (AC), an enzyme found in plague bacteria -- Yersinia pestis -- by purifying and crystallizing the protein and using X-ray crystallography at the Center for Advanced Research in Biotechnology to resolve its configuration. Adenylyl cyclase is a fundamental enzyme found in one form or another in organisms ranging from bacteria to mammals. It synthesizes cyclic AMP (cAMP*), an important signaling molecule that in turn triggers a variety of cellular processes. Six distinct classes of AC are known, playing a wide variety of roles. AC-II is part of the anthrax bacterium's killing mechanism, for example, while AC-III triggers adrenaline release in humans.

Shape plays an essential role in determining the biological function of a protein, but it's very difficult to determine for such large molecules. Three-dimensional structures are known for only two other forms of AC. The NIST experiments revealed that AC-IV has a shape completely different from the other two known shapes. AC-IV folds into a rare form of a barrel-like shape previously seen in only three other unrelated proteins.

The purpose of AC-IV in plague is not well understood, but it may play a role in disrupting cell processes in the infected host. Plague is not as common as it was in the Middle Ages, when it killed millions, but the World Health Organization still logs about 1,000 to 3,000 cases a year, an average of 10 to 15 in the United States. It is rated as a highest category biothreat agent by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases. Fundamental molecular data on this enzyme and its various forms may be critical to the development of defenses against plague and other pathogens, including Bacillus anthracis (Anthrax) and Bordetella pertussis (Whooping cough). Beyond that, structural and functional studies of AC-IV, with its unusual shape, may lead to deeper understanding of the cAMP signaling mechanism and other fundamental cellular processes.

Reference: Details of the structure of AC-IV are published in: D.T. Gallagher, N. Smith, S-K Kim, A. Heroux, H. Robinson and P. Reddy. Structure of the class IV adenylyl cyclase reveals a novel fold. J. Mol. Biol., In Press, Corrected Proof, Available online 14 Aug. 2006.

*cyclic adenosine 3', 5'- monophosphate


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Structure Of Key Enzyme In Plague Bacterium Found." ScienceDaily. ScienceDaily, 18 August 2006. <www.sciencedaily.com/releases/2006/08/060818010537.htm>.
National Institute of Standards and Technology. (2006, August 18). Structure Of Key Enzyme In Plague Bacterium Found. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2006/08/060818010537.htm
National Institute of Standards and Technology. "Structure Of Key Enzyme In Plague Bacterium Found." ScienceDaily. www.sciencedaily.com/releases/2006/08/060818010537.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins