Featured Research

from universities, journals, and other organizations

Structure Of Key Enzyme In Plague Bacterium Found

Date:
August 18, 2006
Source:
National Institute of Standards and Technology
Summary:
NIST researchers have solved the structure of a key enzyme, class IV adenylyl cyclase, from the bacterium responsible for plague, finding that it has a highly unusual configuration. The results may shed light both on how the bacterium kills and on fundamental cell signaling processes.

Ribbon rendering of the structure of AC-IV in Yersina pestis as determined at NIST. The enzyme is a dimer (two identical subunits around a vertical axis), and each of the two subunits forms a central barrel made of eight strands surrounded by short helices. The active site is believed to lie inside the barrel.
Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) have solved the structure of a key enzyme from the bacterium responsible for plague, finding that it has a highly unusual configuration. The results may shed light both on how the bacterium kills and on fundamental cell signaling processes.

The NIST team determined the three-dimensional shape of class IV adenylyl cyclase (AC), an enzyme found in plague bacteria -- Yersinia pestis -- by purifying and crystallizing the protein and using X-ray crystallography at the Center for Advanced Research in Biotechnology to resolve its configuration. Adenylyl cyclase is a fundamental enzyme found in one form or another in organisms ranging from bacteria to mammals. It synthesizes cyclic AMP (cAMP*), an important signaling molecule that in turn triggers a variety of cellular processes. Six distinct classes of AC are known, playing a wide variety of roles. AC-II is part of the anthrax bacterium's killing mechanism, for example, while AC-III triggers adrenaline release in humans.

Shape plays an essential role in determining the biological function of a protein, but it's very difficult to determine for such large molecules. Three-dimensional structures are known for only two other forms of AC. The NIST experiments revealed that AC-IV has a shape completely different from the other two known shapes. AC-IV folds into a rare form of a barrel-like shape previously seen in only three other unrelated proteins.

The purpose of AC-IV in plague is not well understood, but it may play a role in disrupting cell processes in the infected host. Plague is not as common as it was in the Middle Ages, when it killed millions, but the World Health Organization still logs about 1,000 to 3,000 cases a year, an average of 10 to 15 in the United States. It is rated as a highest category biothreat agent by the Centers for Disease Control and Prevention and the National Institute of Allergy and Infectious Diseases. Fundamental molecular data on this enzyme and its various forms may be critical to the development of defenses against plague and other pathogens, including Bacillus anthracis (Anthrax) and Bordetella pertussis (Whooping cough). Beyond that, structural and functional studies of AC-IV, with its unusual shape, may lead to deeper understanding of the cAMP signaling mechanism and other fundamental cellular processes.

Reference: Details of the structure of AC-IV are published in: D.T. Gallagher, N. Smith, S-K Kim, A. Heroux, H. Robinson and P. Reddy. Structure of the class IV adenylyl cyclase reveals a novel fold. J. Mol. Biol., In Press, Corrected Proof, Available online 14 Aug. 2006.

*cyclic adenosine 3', 5'- monophosphate


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Cite This Page:

National Institute of Standards and Technology. "Structure Of Key Enzyme In Plague Bacterium Found." ScienceDaily. ScienceDaily, 18 August 2006. <www.sciencedaily.com/releases/2006/08/060818010537.htm>.
National Institute of Standards and Technology. (2006, August 18). Structure Of Key Enzyme In Plague Bacterium Found. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2006/08/060818010537.htm
National Institute of Standards and Technology. "Structure Of Key Enzyme In Plague Bacterium Found." ScienceDaily. www.sciencedaily.com/releases/2006/08/060818010537.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins