Featured Research

from universities, journals, and other organizations

How Proteins Fold Into Their Critical Shapes

Date:
September 6, 2006
Source:
Cornell University
Summary:
Experimental evidence provided by a Cornell researcher and colleagues at the Scripps Research Institute in La Jolla, Calif., support a long-held theory of how and where proteins fold to create their characteristic shapes and biological functions.

This illustration shows a designed protein transformed from an unfolded into a folded form.
Credit: Adam Liwo / Courtesy of Cornell University

Experimental evidence provided by a Cornell researcher and colleagues at the Scripps Research Institute in La Jolla, Calif., support a long-held theory of how and where proteins fold to create their characteristic shapes and biological functions.

The theory proposes that proteins start to fold in specific places along an amino acid chain (called a polypeptide chain) that contains nonpolar groups, or groups of molecules without a charge, and continue to fold by aggregation, i.e., as several individuals of these nonpolar groupings combine. Using the same principle that separates oil and water, these molecules are hydrophobic -- they avoid water and associate with each other.

In the water-based cell fluid, where long polypeptide chains are manufactured and released by ribosomes, the polypeptide chains rapidly fold up into their biologically functional structure. The theory proposes that there are sites along the polypeptide chains where hydrophobic groups initially fold in on themselves, creating small nonpolar (hydrophobic) pockets that are protected from the water.

"What drives this polypeptide chain to fold up?" asked Harold Scheraga, professor emeritus of chemistry and chemical biology at Cornell and a co-author of a paper published in the Aug. 29 issue of the Proceedings of the National Academy of Sciences (and available online). "That has been the subject of my investigations for some time, and the cited experimental verification of the theory provides a sound basis for further computational work to identify the specific steps in the folding pathway.

"Protein folding is a frontier problem in protein chemistry," said Scheraga, noting that an ability to predict how and where proteins fold could lead to understanding such protein misfolding diseases as Alzheimer's and cystic fibrosis, designing drugs that act on proteins and even creating designer proteins with new functions.

The theory is based on two methods to show that initial folding sites occur among nonpolar groups in a polypeptide chain. Lead author H. Jane Dyson and Peter Wright, both professors of molecular biology at the Scripps Research Institute, used an experimental nuclear magnetic resonance procedure to validate the predicted results of the two theoretical methods.

The first method used supercomputers to calculate the energy required to convert a polypeptide chain into a collapsed hydrophobic pocket. The folds occur in several places that require the least possible energy to maintain. By finding these places where the nonpolar groups exist, the researchers better understand where folding occurs along a linear polypeptide chain.

The second method involved mapping a folded protein by tracing the folding steps required to arrive at the protein's native structure. This method mapped three stages of folding. First, the short-range contacts between amino acids that are very close to each other were mapped, revealing the initial nonpolar (hydrophobic) folds. The next two stages show folds that occur between points that are farther from each other along the polypeptide chain. These secondary folds may attach two or three hydrophobic pockets.

These two methods were used together in this study to pinpoint where on a polypeptide chain the nonpolar segments occur and where initial folding takes place and then propagates to the final folded form.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "How Proteins Fold Into Their Critical Shapes." ScienceDaily. ScienceDaily, 6 September 2006. <www.sciencedaily.com/releases/2006/09/060901161538.htm>.
Cornell University. (2006, September 6). How Proteins Fold Into Their Critical Shapes. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2006/09/060901161538.htm
Cornell University. "How Proteins Fold Into Their Critical Shapes." ScienceDaily. www.sciencedaily.com/releases/2006/09/060901161538.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins