Featured Research

from universities, journals, and other organizations

Researchers Image Molecular Motor Structural Changes

Date:
September 15, 2006
Source:
Duke University Medical Center
Summary:
An international team of researchers has shed new light on how tiny molecular motors that transport materials within cells generate the energy that powers their movements.

Sharyn Endow, Ph.D.
Credit: Image courtesy of Duke University Medical Center

An international team of researchers has shed new light on how tiny molecular motors that transport materials within cells generate the energy that powers their movements.

The knowledge could lead to better understanding of the underlying mechanisms of a range of human disorders such as Down syndrome caused by faulty molecular motors, and possibly to the development of new treatments, the researchers said. For example, molecular motors are responsible for dividing genetic material during cell division, and understanding how motors work in cancer cells, which undergo unchecked cellular division, might lead to new anticancer therapies.

The team, from Duke University Medical Center, the National Institute of Advanced Industrial Science and Technology in Japan, and the Medical Research Council's Laboratory of Molecular Biology in the United Kingdom, reported its findings Sept. 15, 2006, in the journal Molecular Cell.

The research was supported by the U.S. National Institutes of Health; Japan's Ministry of Education, Culture, Sports, Science and Technology; the U.K.'s Medical Research Council, and the Human Frontiers Science Program, an international agency that funds innovative research.

As they move nutrients or other cellular loads around the cell, molecular motors travel along microtubules, infinitesimal "railroad tracks" within the cell. To date, cell biologists had not been able to capture actual images of the structural changes that a molecular motor undergoes as it breaks down adenosine triphosphate (ATP), the source of energy in all cells, into the power necessary to move along the microtubules.

"In order to visualize the actual structure of the motor molecule bound to a microtubule, we combined the images generated by high-resolution electron microscopy," said study investigator Sharyn Endow, Ph.D., a Duke cell biologist. "We were able to see for the first time the actual point at which the molecular motors attach to the microtubule. It is at this juncture that the motor undergoes changes in its structure as it uses ATP to propel itself along the microtubule."

Humans are thought to have approximately 45 different molecular motors -- proteins known as kinesins -- in their bodies. For the study, Endow and her colleagues chose a kinesin found in baker's yeast that closely resembles kinesins found in humans, and which is well understood in terms of structure and biological activity.

Previous work by Endow and colleagues has shown how molecular motors "walk" along microtubules. But they had not been able to obtain images of the actual structural changes kinesins undergo as they move along microtubules.

In the first step toward this breakthrough, the researchers used an existing technology, electron microscopy, which normally enables scientists to magnify very small biological structures up to 400,000 times their original size. Electron microscopes use beams of electrons instead of light to produce images. The images recorded on electron microscope films are two-dimensional, but three-dimensional structures of the proteins can be calculated by computer image processing.

Keiko Hirose, Ph.D., a researcher at Japan's National Institute of Advanced Industrial Science and Technology, performed the elaborate and time-consuming electron microscope imaging. She carefully made multiple images of the kinesin-microtubule units, and performed the computationally demanding analysis that produced the high-resolution models of the motor and microtubule structures from the electron microscope images.

"Fine details are not apparent unless you remove the extraneous noise from electron microscopy images," Hirose said. "This is done by averaging many images to reinforce the common features that show the structure of the protein molecules."

Linda Amos, Ph.D., from the U.K.'s Medical Research Council and senior author of the paper, provided essential advice for the computational analysis and analyzed the resolutions of the final images."

The researchers then took those high-resolution models and combined them with models of kinesin and microtubule structures rendered using another technology, x-ray crystallography. In this approach, scientists send an x-ray beam through a crystallized protein target, in this case, the motor molecules or microtubules, separately. Detectors capture the signal as it exits the target and computers re-create a three-dimensional model. Researchers have not yet been able to image motors bound to micotubules using x-ray methods due to technical challenges, they said.

According to the researchers, the new motor-microtubule models provided structural details of the motor-microtubule interactions that had not been observed previously.

The researchers believe their findings may lead to new insights into a number of diseases, including some neuromuscular conditions, such as Charcot-Marie-Tooth disease. These disorders are thought to be linked to deficiencies in transport by the molecular motors of chemical neurotransmitters that carry messages between nerve cells. Down syndrome, in which chromosomes do not divide properly in egg cells, also is thought to be caused by defects in kinesins. Finding methods to stimulate kinesin activity might help in the treatment of these human diseases, the researchers said.

Conversely, drugs that inhibit kinesin activity might be a potential approach to slowing the uncontrolled cell division of cancer. For example, the drug Taxol, which is used to treat breast and ovarian cancers, works by stabilizing microtubules. But the problem with using Taxol as a general inhibitor of cell division is that it works on all dividing cells, not just those involved in tumors or cancers, and so causes unwanted side effects, such as hair loss.

"With this new information about kinesins and how they interact with microtubules, the hope is that we will be able to develop drugs that can target specific kinesins," Endow said.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Duke University Medical Center. "Researchers Image Molecular Motor Structural Changes." ScienceDaily. ScienceDaily, 15 September 2006. <www.sciencedaily.com/releases/2006/09/060914182214.htm>.
Duke University Medical Center. (2006, September 15). Researchers Image Molecular Motor Structural Changes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2006/09/060914182214.htm
Duke University Medical Center. "Researchers Image Molecular Motor Structural Changes." ScienceDaily. www.sciencedaily.com/releases/2006/09/060914182214.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com
Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins