Featured Research

from universities, journals, and other organizations

Wolf In Sheep's Clothing: Plague Bacteria Reveal One Of Their Virulence Tricks

Date:
September 21, 2006
Source:
Rockefeller University
Summary:
The bacteria known as Yersinia, a family of pathogens that includes the plague, kill their host cells by -- among other things -- inserting proteins and other virulence factors that disrupt their normal structure. New research by Rockefeller University scientists shows at the atomic, cellular and organismal level that the cause of this disruption can be attributed largely to YpkA, a virulence factor that mimics proteins found in its host.

A plague's protein: A structural image of the protein-protein complex formed when YpkA (green and pink) binds to the Rac1 protein of the host cell (yellow and purple).
Credit: Image courtesy of Rockefeller University

The bacterium that causes the plague belongs to a virulent family of bacteria called Yersinia, a group that also includes a pathogen responsible for food poisoning. These bacteria insert into their host cells proteins and other virulence factors, which kill by — among other things — disrupting the cells' normal structure. One of these proteins, called YpkA, attacks a cell’s internal skeleton. Now, a study published by Rockefeller University researchers in the most recent issue of Cell shows exactly how YpkA does this, proving the protein’s mechanism from the atomic to the organismal level and providing a potential target for new antibiotic drugs.

C. Erec Stebbins, associate professor and head of the Laboratory of Structural Microbiology, and graduate student Gerd Prehna solved the structure for one region of the YpkA protein, a “binding domain” where it interlocks with another protein on the host cell’s membrane. By looking at the crystal structure of this protein-protein complex, Prehna discovered that the configuration looked just like one formed by some of the host’s own signaling proteins. And it’s this mimicry, he found, that leads to a signaling shutdown and deregulation of the cell’s normal structure.

After establishing this effect, Prehna set about disrupting it by mutation. Using the structure to guide him, he changed three amino acids of YpkA that contacted host proteins, and then looked at how the mutated bacteria affected human cells compared to the original wild-type Yersinia. His results confirmed the hypothesis from the structural study: While the wild-type YpkA wreaked havoc on their host cells’ cytoskeletons, the mutant left the actin-based skeleton intact.

Then, the researchers took it one step further. Stebbins and Prehna worked with collaborators at Stony Brook University, who created Yersinia bacteria with Prehna’s mutations. The Stony Brook researchers then injected mice with the wild-type and mutant strains of Yersinia. All the mice infected with the wild-type bacteria died within nine days of exposure. But the group that received the YpkA mutant had an 80 percent survival rate, showing that Prehna’s mutation drastically lowered Yersinia’s harmful effects. “Altering this binding site not only impairs the bacteria’s ability to disrupt the host cytoskeleton,” Stebbins says, “but it decreases its virulence significantly.”

“It’s rare to find something that has such a strong effect that you can hit one protein so specifically, knock out essentially half its activity, and have such a dramatic result,” he says. “Not only did we have a mechanistic explanation, but we could connect what we were seeing in animal studies all the way down to what was happening at the atomic level.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

Rockefeller University. "Wolf In Sheep's Clothing: Plague Bacteria Reveal One Of Their Virulence Tricks." ScienceDaily. ScienceDaily, 21 September 2006. <www.sciencedaily.com/releases/2006/09/060920193618.htm>.
Rockefeller University. (2006, September 21). Wolf In Sheep's Clothing: Plague Bacteria Reveal One Of Their Virulence Tricks. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2006/09/060920193618.htm
Rockefeller University. "Wolf In Sheep's Clothing: Plague Bacteria Reveal One Of Their Virulence Tricks." ScienceDaily. www.sciencedaily.com/releases/2006/09/060920193618.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins