Featured Research

from universities, journals, and other organizations

Mosquitoes' Sweet Tooth Could Be Answer To Eliminating Malaria

Date:
September 25, 2006
Source:
Hebrew University Of Jerusalem
Summary:
Mosquitoes' thirst for sugar could prove to be the answer for eliminating malaria and other mosquito-transmitted diseases, says Hebrew University researcher Prof. Yosef Schlein in a study published in the American Science magazine and the International Journal for Parasitology.

Mosquito satisfying its "sweet tooth."
Credit: Photo Hebrew University

Mosquitoes' thirst for sugar could prove to be the answer for eliminating malaria and other mosquito-transmitted diseases, says Hebrew University researcher Prof. Yosef Schlein in a study published in the American Science magazine and the International Journal for Parasitology.

Related Articles


We have all suffered the irritation of being the food source for hungry mosquitoes. While it is generally well known that female mosquitoes need a meal of blood before laying their eggs, less has been written about their appetite for sweet snacks between meals.

It is this diet of "sweets" -- derived from nectar from flowers and nectaries on plant leaves and stems - that provide mosquitoes with their persistent energy.

Schlein and his co-researcher, Gόnter Mόller, in the Department of Parasitology at the Hebrew University-Hadassah Medical School's Kuvin Center for the Study of Infectious and Tropical Diseases, decided to exploit the mosquitoes' thirst for sweets to bring about their demise - by spraying acacia trees with a sugar solution that had been spiked with the oral insecticide Spinosad.

The experiment was carried out in an oasis in the southern desert region in Israel where some scattered trees flower most of the year, including during a long, dry and otherwise flowerless season. Schlein assumed that in the absence of other sugar sources nectar-searching mosquitoes would be attracted to these plants.

The oasis was chosen for its isolated mosquito population, so that the experiment could be carried out effectively without influx and exchange of mosquitoes from neighboring areas.

Sucrose solution spiked with the oral insecticide Spinosad was sprayed on acacia trees in the oasis. The spraying of insecticide had the effect of eliminating almost the entire mosquito population in the oasis. The few mosquitoes that were trapped after spraying were thought to be newly emerging adults, and cumulative population growth was prevented by continuous effect of the insecticide. Thus, the oasis was completely depleted of its mosquito population.

Schlein says that in a desert area, in the dry season, the flowers of sparse perennial trees or bushes are key elements in the habitat of adult mosquitoes, since they are the only source of sugar. In dry areas, the shortage of sugar sources may even limit the life span of mosquitoes and thus decrease their ability to transmit diseases. Even when a large variety of flowers is available, the number of sugar sources is limited by the preferences of the mosquitoes. For example, among 77 flowering plants in Wisconsin, mosquitoes concentrated on four dominant ones.

Schlein believes that blossoms that are nectar-feeding centers may be used for efficient mosquito-control, if sprayed with the Spinosad-sugar solution bait. Spinosad is an environmental "reduced-risk" oral insecticide that has little effect on several insect groups, and has low toxicity to birds and mammals.

Places that might be suitable for using floral centers for control of mosquitoes are desert and savannah regions, particularly in sub-Saharan Africa, where the burden of malaria is increasing due to environmental changes, drug resistance and mosquito resistance to conventional insecticides. These areas include large-scale irrigation projects in arid and semi-arid areas that cover nearly half of the arable land in Africa and similar projects in the desert in Pakistan. In these regions, irrigated crops, such as rice, are not a source of nectar for adult mosquitoes, while sugar meals are scarce in the surrounding arid areas.

Therefore, the planting of mosquito-attracting trees or bushes in suitable habitats, sprayed with oral insecticide, could provide a relatively easy and cheap way to supplement the limited arsenal against mosquitoes -- and the fight against malaria.


Story Source:

The above story is based on materials provided by Hebrew University Of Jerusalem. Note: Materials may be edited for content and length.


Cite This Page:

Hebrew University Of Jerusalem. "Mosquitoes' Sweet Tooth Could Be Answer To Eliminating Malaria." ScienceDaily. ScienceDaily, 25 September 2006. <www.sciencedaily.com/releases/2006/09/060925065545.htm>.
Hebrew University Of Jerusalem. (2006, September 25). Mosquitoes' Sweet Tooth Could Be Answer To Eliminating Malaria. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2006/09/060925065545.htm
Hebrew University Of Jerusalem. "Mosquitoes' Sweet Tooth Could Be Answer To Eliminating Malaria." ScienceDaily. www.sciencedaily.com/releases/2006/09/060925065545.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) — Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) — Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins