Featured Research

from universities, journals, and other organizations

Deconstructing A Deadly Mold, Gene By Gene

Date:
October 17, 2006
Source:
USDA/Agricultural Research Service
Summary:
Few molds are as destructive to crops as Aspergillus flavus, which is why scientists with the Agricultural Research Service (ARS) and their collaborators are scrutinizing this fungus, one gene at a time.

ARS geneticist Jiujiang Yu observes the sequencing progress of the Aspergillus flavus genome at the J. Craig Venter Institute, Joint Technology Center, which supports TIGR for DNA sequencing.
Credit: Photo by Stephen Ausmus

Fungi: Can't live with them, can't live without them.

Related Articles


While many of these tiny spore-producers are lauded for their industriousness (think penicillin, yeast for leavened bread, and mold-enhanced delicacies like Roquefort and blue cheeses), it seems there are just as many noxious fungi out there ready to contaminate food, houses--even the air we breathe.

And no mold is as dark a character as Aspergillus flavus, which is why scientists with the Agricultural Research Service (ARS) and their collaborators are scrutinizing this fungus, one gene at a time.

A. flavus can be terribly destructive. With an affinity for corn, peanuts, cottonseed and tree nuts such as almonds and walnuts, it can plague vast acreages of crops in the United States and threaten food and animal feed security worldwide.

What's so dangerous about A. flavus are its deadly toxins, known collectively as aflatoxin. These fungal poisons are the second leading cause of aspergillosis in humans. Considered to be among the most potent carcinogens in nature, they've also been linked to some forms of cancer.

Because of the risks associated with aflatoxin, the Food and Drug Administration has put safeguards in place to protect consumers. But federal researchers--like ARS geneticist Jiujiang Yu--would like to find ways to keep toxic fungi from occurring in the first place.

Yu, who works at the ARS Southern Regional Research Center in New Orleans, La., was part of a team of scientists who recently sequenced a strain of the A. flavus fungus. Along with ARS researchers Ed Cleveland and Deepak Bhatnagar, Yu collaborated on the project with North Carolina State University's Gary Payne and William Nierman of The Institute for Genomic Research in Rockville, Md.

One of the team's primary goals is to pinpoint which of the fungus' 13,000 genes regulate toxin production. They'd like to disable them so they can rob the fungus of its poison-making machinery.

ARS is the U.S. Department of Agriculture's chief scientific research agency.


Story Source:

The above story is based on materials provided by USDA/Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA/Agricultural Research Service. "Deconstructing A Deadly Mold, Gene By Gene." ScienceDaily. ScienceDaily, 17 October 2006. <www.sciencedaily.com/releases/2006/10/061017093103.htm>.
USDA/Agricultural Research Service. (2006, October 17). Deconstructing A Deadly Mold, Gene By Gene. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2006/10/061017093103.htm
USDA/Agricultural Research Service. "Deconstructing A Deadly Mold, Gene By Gene." ScienceDaily. www.sciencedaily.com/releases/2006/10/061017093103.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins