Featured Research

from universities, journals, and other organizations

Scientists Unravel 'Molecular Inch-worm' Structure Of Walking-pneumonia Bacterium

Date:
October 25, 2006
Source:
University of Georgia
Summary:
Researchers at the University of Georgia, using glow-in-the-dark proteins and microcinematography, have helped unravel the development and function of a complex organelle in the bacterium that causes "walking pneumonia." The researchers have described in new, precise detail the unique cell extension that forms on one end of the bacterium Mycoplasma pneumoniae. This structure, called a "terminal organelle," performs several tasks for this pervasive bacterium and even acts as a "molecular inch-worm," helping the microorganism move.

Researchers at the University of Georgia, using glow-in-the-dark proteins and microcinematography, have helped unravel the development and function of a complex organelle in the bacterium that causes "walking pneumonia."

The researchers have described in new, precise detail the unique cell extension that forms on one end of the bacterium Mycoplasma pneumoniae. This structure, called a "terminal organelle," performs several tasks for this pervasive bacterium and even acts as a "molecular inch-worm," helping the microorganism move.

"Mycoplasmas are among the simplest known prokaryotes--only a fraction the size of other health-related bacteria such as E. coli," said microbiologist Duncan Krause, leader of the research team. "They are true minimalists with very small genomes, lacking the typical cell regulatory mechanisms found in other bacteria. And yet some species such as M. pneumoniae posses this complex terminal organelle. We've been able to observe it in growing cultures and describe the choreography of events at a level of detail not previously possible."

The research is being published this week in The Proceedings of the National Academy of Sciences. Other authors of the paper include graduate student Benjamin Hasselbring, undergraduate Robert Krause and former graduate student Jarrat Jordan.

M. pneumoniae infections affect millions worldwide, causing chronic bronchitis and atypical or "walking pneumonia," a term that describes cases of pneumonia that are distinct from acute, life-threatening pneumonia requiring a patient's hospitalization.

Krause and others have been increasingly interested in the terminal organelle that develops on one end of M. pneumoniae because it is involved in cell division, adherence to respiratory tissues and a little-understood mechanism of propulsion called "gliding motility."

Bacteria can move in a variety of ways, including the use of flagella to "swim." But since M. pneumoniae lack flagella, they "glide," a method of movement that has been known for some time yet never entirely understood. The cells seem to bend and flex, but it's unclear how that is accomplished. The new data indicate that gliding is essential for cell division in M. pneumoniae.

"In addition to its significant impact on public health, M. pneumoniae is intriguing from a biological perspective," said Krause. "They have no cell walls, and their genome is among the smallest known for a cell capable of a free-living existence."

Other researchers, using electron microscopy, have described the basic structure of the terminal organelle, but Krause's team went further, using fluorescence microscopy and fluorescent protein fusions that allowed them to track the actions of specific proteins in live, growing cells. Time-lapse digital imaging let them see the development and activity of this structure in real time--giving new clues about function and demonstrating that, contrary to previous thinking, multiple new terminal organelles often form before cell division is observed.

From the standpoint of basic science, this research demonstrates the feasibility of using fluorescent proteins to study how organelles in these incredibly tiny bacteria grow and what their functions are. From a medical standpoint, however, they point the way to potential new drug targets and therapies to stop walking pneumonia and chronic bronchitis infections in their tracks.

Since the organelle is involved in colonization of epithelial tissues in human lungs, finding a way to stop such attachment or gliding could halt infections or make them far less severe.

"M. pneumoniae accounts for 20 percent of community-acquired pneumonias in this country," said Krause. "Finding out more about how the bacterium that causes the disease works gives us a new edge in thinking of ways to overcome such infections."

This work was supported by Public Health Research Service research grants from the National Institute of Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Scientists Unravel 'Molecular Inch-worm' Structure Of Walking-pneumonia Bacterium." ScienceDaily. ScienceDaily, 25 October 2006. <www.sciencedaily.com/releases/2006/10/061024010215.htm>.
University of Georgia. (2006, October 25). Scientists Unravel 'Molecular Inch-worm' Structure Of Walking-pneumonia Bacterium. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2006/10/061024010215.htm
University of Georgia. "Scientists Unravel 'Molecular Inch-worm' Structure Of Walking-pneumonia Bacterium." ScienceDaily. www.sciencedaily.com/releases/2006/10/061024010215.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) — Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) — Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) — At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) — The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins