Featured Research

from universities, journals, and other organizations

Flight of the Bumblebee: Flower Choice Matters

Date:
October 29, 2006
Source:
University of Wisconsin - Milwaukee
Summary:
Bees play a vital role in the pollination of native wildflowers, and UWM researchers are studying how invasive species interfere with seed production in these native plants.

Graduate student Rebecca Flanagan and undergraduate Dustin Knutowski (below) in their experimental garden at the UWM Field Station.
Credit: Photo by Pete Amland

Rebecca Flanagan has probably come as close as a human can to reading the mind of a bumblebee.

Flanagan, a graduate student in biological sciences, and Associate Professor Jeffrey Karron are studying the behaviors of bees as they gather pollen – which plant species the bees forage on, which flowers they probe and in what order, and how many blooms they visit before moving on to another plant. In doing so, the bees make plant reproduction possible by dispersing pollen.

To predict where each bee that she tracks will carry its pollen next, Flanagan has to literally think like one.

“Once they’ve learned a foraging style that’s been successful, they are more likely to stick with it rather than invest time in learning something new,” says Flanagan.

But why go to such lengths to map the flight of the bumblebee? It may seem random and inconsequential. But it is neither, says Karron.

The bees are pivotal players in determining which plant populations survive through successful reproduction. If scientists could better understand nature’s decision-making process, then they could use the information to increase crop yields and to boost conservation of native plant communities.

Best bee practices

Because there are many bee behaviors, the task isn’t simple, but with tedious scrutiny it is documentable.

“Bumblebees definitely have distinct foraging patterns, both among species and even individuals of a single species,” Karron says. In fact, some of the many different behaviors lead to far more fruitful propagation than others.

To understanding foraging patterns, the team must manipulate every variable they can feasibly control in a natural setting.

But the experimental garden they keep at the UWM Field Station in the Cedarburg Bog is far from the sterile laboratory, and the complexity of their experiments becomes immediately evident: There are more options here than clothes in a teenage girl’s closet.

Nonetheless, Karron and his research group have developed an unparalleled data set by testing the effects of various combinations of plant species on their reproductive patterns.

Twice funded by the National Science Foundation, Karron’s research centers on the reproductive biology of monkeyflower, a wetland plant native to Wisconsin. Karron’s lab uses several innovative methods of tracking monkey flower mating, and all hinge on where the pollen comes from.

Pollen allows the flowers, which contain both male and female reproductive organs, to produce seeds. Plants can only produce seeds from their own species’ pollen. The pollen from another species deposited on a monkeyflower, for example, is simply wasted.

The most effective reproduction occurs through cross-pollination – when pollen deposited on a flower is brought from a different plant of the same species, either from one pollen donor or many. When pollen is spread from one flower to another on the same plant – called self-pollination – seed production is considerably lower and the resulting seedlings are much less vigorous.

Using genetic analysis to establish paternity, Karron has demonstrated that adjacent flowers differ markedly in their mating patterns.

“It’s amazing what we’ve found,” he says. “When a bee visits the first flower on a plant, 80 percent of the seeds are cross-pollinated. But by the time the bees have landed on the fourth flower on that plant, 90 percent of the seeds are self-pollinated.”

Bee magnets

Flanagan has taken the research of Karron a step further by testing whether the inclusion of purple loosestrife, an invasive weed that chokes wetlands, will affect the seed production of monkeyflower.

She has set out the garden in a grid of numbered holes. In this way, she can rotate the kinds of potted plants that are dropped in each morning and the density of each species in the plot. On any given day, Flanagan will trim the plants so that each has the same number of flowers on it.

Then she tracks one bee at a time, calling out its exact foraging sequence by number to her undergraduate assistant, Dustin Knutowski, who charts the path.

In the time she has spent working at the garden, she says, the invader plant is the heavier “bee magnet.” And if that’s the case, purple loosestrife is luring pollinators away from the native plants.

To investigate her hunch further, Flanagan added a third wetland species to the garden – a native plant known as “great blue lobelia.” So far, the bees continue their strong attraction to purple loosestrife.

“This preference for purple loosestrife or other exotics could threaten reproduction of native plants and have devastating effects on ecosystems,” Karron says.

Who’s your daddy?

Calculating paternity could be a nightmare. Because pollen from multiple monkey flower plants can be deposited during a single bee visit, seeds produced by one flower can be “sired” by pollen from up to nine different plants.

So Karron uses genetic markers to unambiguously determine which plant fathered each of the thousands of seeds he samples. He is working backwards to get at the same question Flanagan seeks – where the bees have been.

He divides each of the plants in the garden to create an exact copy of each population.

Imagine having 20 sets of identical twins, he says, and dividing them into two groups that are exact copies of one another. That is what Karron has done with his garden, only he has produced many identical sets so that he can subject them to different ecological conditions.

Karron is proud of the fine level of detail his techniques have produced.

His research group was the first to demonstrate that mating patterns differ dramatically among individual flowers and the first to show that the presence of competing plant species influences mating patterns.

“Using multiple strategies,” he says, “we are able to answer questions that no one else has.”


Story Source:

The above story is based on materials provided by University of Wisconsin - Milwaukee. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin - Milwaukee. "Flight of the Bumblebee: Flower Choice Matters." ScienceDaily. ScienceDaily, 29 October 2006. <www.sciencedaily.com/releases/2006/10/061027183554.htm>.
University of Wisconsin - Milwaukee. (2006, October 29). Flight of the Bumblebee: Flower Choice Matters. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2006/10/061027183554.htm
University of Wisconsin - Milwaukee. "Flight of the Bumblebee: Flower Choice Matters." ScienceDaily. www.sciencedaily.com/releases/2006/10/061027183554.htm (accessed July 30, 2014).

Share This




More Plants & Animals News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Thousands Flocking to German Crop Circle

Raw: Thousands Flocking to German Crop Circle

AP (July 30, 2014) Thousands of people are trekking to a Bavarian farmer's field to check out a mysterious set of crop circles. (July 30) Video provided by AP
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Raw: Otters Enjoy Water Slides at Japan Zoo

Raw: Otters Enjoy Water Slides at Japan Zoo

AP (July 30, 2014) River otters were hitting the water slides to beat the summer heatwave on Wednesday at Ichikawa City's Zoological and Botanical Garden. (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins