Featured Research

from universities, journals, and other organizations

Silver Bullet: Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses

Date:
November 16, 2006
Source:
University of Georgia
Summary:
Using nanotechnology, a team of University of Georgia researchers has developed a diagnostic test that can detect viruses as diverse as influenza, HIV and RSV in 60 seconds or less. In addition to saving time, the technique -- which is detailed in the November issue of the journal Nano Letters -- could save lives by rapidly detecting a naturally occurring disease outbreak or bioterrorism attack.

Waiting a day or more to get lab results back from the doctor’s office soon could become a thing of a past. Using nanotechnology, a team of University of Georgia researchers has developed a diagnostic test that can detect viruses as diverse as influenza, HIV and RSV in 60 seconds or less.

In addition to saving time, the technique – which is detailed in the November issue of the journal Nano Letters – could save lives by rapidly detecting a naturally occurring disease outbreak or bioterrorism attack.

“It saves days to weeks,” said lead author Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development at the UGA College of Veterinary Medicine. “You could actually apply it to a person walking off a plane and know if they’re infected.”

The technique, called surface enhanced Raman spectroscopy (SERS), works by measuring the change in frequency of a near-infrared laser as it scatters off viral DNA or RNA. This change in frequency, named the Raman shift for the scientist who discovered it in 1928, is as distinct as a fingerprint.

This phenomenon is well known, but Tripp explained that previous attempts to use Raman spectroscopy to diagnose viruses failed because the signal produced is inherently weak.

But UGA physics professor Yiping Zhao and UGA chemistry professor Richard Dluhy experimented with several different metals and methods and found a way to significantly amplify the signal. Using a method they’ve patented, they place rows of silver nanorods 10,000 times finer than the width of a human hair on the glass slides that hold the sample. And, like someone positioning a TV antenna to get the best reception, they tried several angles until they found that the signal is best amplified when the nanorods are arranged at an 86-degree angle.

“The enhancement factors are extraordinary,” Dluhy said. “And the nice thing about this fabrication methodology is that it’s very easy to implement, it’s very cheap and it’s very reproducible.”

Tripp said the technique is so powerful that it has the potential to detect a single virus particle and can also discern virus subtypes and those with mutations such as gene insertions and deletions. This specificity makes it valuable as a diagnostic tool, but also as a means for epidemiologists to track where viruses originate from and how they change as they move through populations.

The researchers have shown that the technique works with viruses isolated from infected cells grown in a lab, and the next step is to study its use in biological samples such as blood, feces or nasal swabs. Tripp said preliminary results are so promising that the researchers are currently working to create an online encyclopedia of Raman shift values. With that information, a technician could readily reference a Raman shift for a particular virus to identify an unknown virus.

To make their finding commercially viable, they’re developing a business model, seeking venture capital and exploring ways to mass produce the silver nanorods. Next year, they plan on moving their enterprise to the Georgia BioBusiness Center, an UGA incubator for startup bio-science companies.

Presently, viruses are first diagnosed with methods that detect the antibodies a person produces in response to an infection. Tripp explained that these tests are prone to false positives because a person can still have antibodies in their system from a related infection decades ago. The tests are also prone to false negatives because some people don’t produce high levels of antibodies.

Because of these limitations, antibody based tests often must be confirmed with a test known as polymerase chain reaction (PCR), which detects the virus itself by copying it many times. The test can take anywhere from several days to two weeks. Tripp said the latter is clearly too long, especially in light of emerging threats such as H5N1 avian influenza.

“For some respiratory viruses, you’ve either cleared the infection at that point or succumbed to the infection,” Tripp said. “What we’ve developed is the next generation of diagnostic testing.”


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Silver Bullet: Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses." ScienceDaily. ScienceDaily, 16 November 2006. <www.sciencedaily.com/releases/2006/11/061116083304.htm>.
University of Georgia. (2006, November 16). Silver Bullet: Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2006/11/061116083304.htm
University of Georgia. "Silver Bullet: Researchers Use Laser, Nanotechnology To Rapidly Detect Viruses." ScienceDaily. www.sciencedaily.com/releases/2006/11/061116083304.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins