Featured Research

from universities, journals, and other organizations

P(acman) Takes A Bite Out Of Deciphering Drosophila DNA

Date:
December 1, 2006
Source:
Baylor College of Medicine
Summary:
A new method of introducing DNA into the genome of fruit flies promises to transform the ability of scientists to study the structure and function of virtually all the fly's genes, and the method may be applicable to other frequently studied organisms such as mice.

P(acman) -- a new method of introducing DNA into the genome of fruit flies or Drosophila -- promises to transform the ability of scientists to study the structure and function of virtually all the fly's genes, and the method may be applicable to other frequently studied organisms such as mice, said its Baylor College of Medicine developers in an article in the current issue of the journal Science.

"P(acman) overcomes a key limitation of currently available methods because it allows you to study large chunks of DNA in vivo," said Dr. Hugo Bellen, professor of molecular and human genetics at Baylor College of Medicine and director of the program in developmental biology. He is also a Howard Hughes Medical Institute investigator. The new technique allows researchers to study large genes and even gene complexes in the fruit fly, which was not possible before.

P/phiC31 artificial chromosome for manipulation, or P(acman), combines three recently developed technologies: a specially designed bacterial artificial chromosome (BAC) that allows maintenance of large pieces of DNA in bacteria, recombineering that allows the manipulation of large pieces of DNA that can then be inserted into the genome of the fly at a specific site using phiC31-mediated transgenesis.

It is a new technique with far-reaching promise, said Bellen.

P(acman) overcomes certain obstacles that have hampered research. It allows the cloning of large pieces of DNA to be used to transform the genome, and it permits that DNA to be inserted into specific places in the genome. Bellen credits the report's first author, Koen J.T. Venken, a graduate student in the BCM Program in Developmental Biology, with putting the technologies together to come up with a new methodology in the field.

Current technology has certain problems for researchers seeking to understand the structure and function of genes, said Bellen. Often, when scientists breed flies that lack a particular gene and then try to put that gene back into the fly, it inserts itself randomly into the genetic blueprint.

In some cases, it makes too much protein, and in others, too little. In other instances, it may disrupt the message from another gene.

"You are really comparing apples and oranges when you do this," said Bellen. The technique is also limited to small DNA chunks.

"Koen set out to develop a new transgenesis system using the three techniques," said Bellen.

The bacterial artificial chromosome, or BAC, he used allows the scientist to maintain large chunks of DNA in the bacteria, but it is present in only one or few copies. However, the bacteria can be induced to produce many copies of the DNA when needed.

Koen then integrated a technique called "recombineering" into the strategy, which facilitates the scientist to clone large chunks of DNA and subsequently allows them to make specific mutations anywhere he or she wants in the gene.

The third technique allows the researcher to pinpoint where he or she wants to the mutant gene to go in the genetic blueprint of the fly, eliminating the apples-and-oranges problem. This third technique -- phiC31 -- works also in mouse and human cells, implying that this new technique could be used in those cells as well.

Others who contributed to this report include Yuchun He, also of BCM, and Dr. Roger A. Hoskins of Lawrence Berkeley National Laboratory in Berkeley, California.

The work was supported by the National Institutes of Health and the Howard Hughes Medical Institute.


Story Source:

The above story is based on materials provided by Baylor College of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Baylor College of Medicine. "P(acman) Takes A Bite Out Of Deciphering Drosophila DNA." ScienceDaily. ScienceDaily, 1 December 2006. <www.sciencedaily.com/releases/2006/11/061130191541.htm>.
Baylor College of Medicine. (2006, December 1). P(acman) Takes A Bite Out Of Deciphering Drosophila DNA. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2006/11/061130191541.htm
Baylor College of Medicine. "P(acman) Takes A Bite Out Of Deciphering Drosophila DNA." ScienceDaily. www.sciencedaily.com/releases/2006/11/061130191541.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Disquieting Times for Malaysia's 'fish Listeners'

Disquieting Times for Malaysia's 'fish Listeners'

AFP (Aug. 19, 2014) Malaysia's last "fish listeners" -- practitioners of a dying local art of listening underwater to locate their quarry -- try to keep the ancient technique alive in the face of industrial trawling and the depletion of stocks. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
USDA Cracks Down On Imports From Foreign Puppy Mills

USDA Cracks Down On Imports From Foreign Puppy Mills

Newsy (Aug. 18, 2014) New USDA measures to regulate dog imports aim to crack down on buying dogs from overseas puppy mills. Video provided by Newsy
Powered by NewsLook.com
Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Bone Marrow Drug Regrows Hair In Some Alopecia Patients

Newsy (Aug. 18, 2014) Researchers performed an experiment using an FDA-approved drug known as ruxolitinib. They found it to be successful in the majority of patients. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins