Featured Research

from universities, journals, and other organizations

New Approach To Mad Cow Disease Successful In Lab: Prion-infected Mice Survive Longer

Date:
December 4, 2006
Source:
University of Bonn
Summary:
A new method of treatment can appreciably slow down the progress of the fatal brain disease scrapie in mice. This has been established by German researchers from the Universities of Munich and Bonn together with their colleagues at the Max Planck Institute in Martinsried. They used an effect discovered by the US researchers Craig Mello and Andrew Fire, for which they were awarded this year's Nobel Prize for Medicine.

A new method of treatment can appreciably slow down the progress of the fatal brain disease scrapie in mice. This has been established by researchers from the Universities of Munich and Bonn together with their colleagues at the Max Planck Institute in Martinsried. To do this they used an effect discovered by the US researchers Craig Mello and Andrew Fire, for which they were awarded this year's Nobel Prize for Medicine. Scrapie is a variant of the cattle disease BSE (bovine spongiform encephalopathy, also known as 'mad cow disease') and the human equivalent Creutzfeld-Jakob disease. However, it will take years for the method to be introduced to medicine, the researchers warn. Their findings are published in the next issue of the Journal of Clinical Investigation (Vol. 116, No. 12, December 2006).

Scrapie, Creutzfeld-Jakob and BSE are among the most unusual diseases known to medical research. Unusual because the pathogens are apparently neither viruses nor bacteria, being simply protein molecules known as protein prions. What is even more peculiar: exactly the same prion proteins occur in healthy animals. The only difference is that they have a different shape. When there is contact with their 'diseased twins' they change their shape, also becoming 'diseased.' The result is an irresistible chain reaction. The malformed prion proteins can be deposited in the brain, thereby destroying brain tissue. Prion diseases are always fatal, often, however, not until months after the outbreak of the disease. As yet there is no cure.

In mice suffering from scrapie the pathogenic prion protein is known as PrP-Scr, whereas the normal variant is PrP-C. PrP-C seems to have a protective effect in diseases like a stroke. Interestingly, mice which cannot produce any PrP-C appear to be completely healthy. This has become the starting point for a new therapeutic approach which for some years now has been current in research circles: can we not simply switch off the production of 'healthy' PrP-C in infected animals, thereby depriving the 'diseased' PrP-Scr of its ability to spread" In this way the chain reaction would be interrupted.

New therapeutic approach

Scientists from Munich's Ludwig Maximilian University and the University of Bonn, in conjunction with colleagues from the Max Planck Institute in Martinsried, have been testing whether this approach works. In doing so they cut back the production of PrP-C in mice by means of an ingenious procedure. The researchers used a special RNA molecule for this purpose. RNA is related to the genetic molecule DNA. There are types of RNA known as siRNAs which can attach themselves to specific genes, thereby preventing these from being 'read'. The production of the appropriate protein is thus shut down. This effect is known as RNA interference; its discovery was rewarded with this year's Nobel Prize for Medicine. "We modified the brain cells of mice in such a way that they were able to produce siRNAs in place of the 'healthy' PrP-C protein," explains Professor Alexander Pfeifer, director of the Institute of Pharmacology of the University of Bonn. "In cell cultures the production of PrP-C was thereby cut back by up to 97 per cent."

The researchers then tested what effect these siRNAs had on mice which had scrapie. 'If brain cells are to produce siRNAs, you have to smuggle in the corresponding gene,' says Professor Kretschmar, director of the Prion Centre of Munich's Ludwig Maximilian University. 'But presumably we'll never manage to equip all the cells in the brain with this gene.' This is why the researchers also wanted to find out how many cells they have to 'revamp' genetically to treat scrapie or similar diseases successfully. For this purpose they bred mice that only had some brain cells which could produce siRNAs. 'Whereas the untreated mice died on average after 165 days, the mice which had been treated lived appreciably longer,' is how Professor Kretschmar summarises the results.

BSE-resistant cattle

It varied how much longer they lived: if only a few cells could produce siRNAs, the mice died at almost the same time as the control mice, i.e. on average after 170 days. However, if the majority of the brain cells were protected by siRNA, the mice survived the prion disease for up to 230 days, in other words about a third longer.

'Basically siRNAs seem to be a promising therapeutic option for scrapie, CJD or BSE,' Professor Pfeifer emphasises. 'However, it will take years before the method can be used on human beings.' The method is also relevant for animal breeding: in principle it can be used to breed cattle which cannot produce any PrP-C. They would then be resistant to BSE.


Story Source:

The above story is based on materials provided by University of Bonn. Note: Materials may be edited for content and length.


Cite This Page:

University of Bonn. "New Approach To Mad Cow Disease Successful In Lab: Prion-infected Mice Survive Longer." ScienceDaily. ScienceDaily, 4 December 2006. <www.sciencedaily.com/releases/2006/12/061201180720.htm>.
University of Bonn. (2006, December 4). New Approach To Mad Cow Disease Successful In Lab: Prion-infected Mice Survive Longer. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2006/12/061201180720.htm
University of Bonn. "New Approach To Mad Cow Disease Successful In Lab: Prion-infected Mice Survive Longer." ScienceDaily. www.sciencedaily.com/releases/2006/12/061201180720.htm (accessed July 22, 2014).

Share This




More Plants & Animals News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo Welcomes New, Rare Rhino Calf

San Diego Zoo Welcomes New, Rare Rhino Calf

Reuters - US Online Video (July 21, 2014) An endangered black rhino baby is the newest resident at the San Diego Zoo. Sasha Salama reports. Video provided by Reuters
Powered by NewsLook.com
Shark Sightings a Big Catch for Cape Tourism

Shark Sightings a Big Catch for Cape Tourism

AP (July 21, 2014) A rise in shark sightings along the shores of Chatham, Massachusetts is driving a surge of eager vacationers to the beach town looking to catch a glimpse of a great white. (July 21) Video provided by AP
Powered by NewsLook.com
$23.6 Billion Awarded To Widow In Smoking Lawsuit

$23.6 Billion Awarded To Widow In Smoking Lawsuit

Newsy (July 20, 2014) Cynthia Robinson claims R.J. Reynolds Tobacco Company hid the health and addiction risks of its products, leading to the death of her husband in 1996. Video provided by Newsy
Powered by NewsLook.com
A Centuries' Old British Tradition Is Far from a Swan Song

A Centuries' Old British Tradition Is Far from a Swan Song

AFP (July 19, 2014) As if it weren't enough that the Queen is the Sovereign of the UK and 15 other Commonwealth realms, she is also the owner of all Britain's unmarked swans. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins