Featured Research

from universities, journals, and other organizations

Spanish Scientists Reveal Dynamic Map Of Proteins, Possibilities For New Drugs

Date:
January 10, 2007
Source:
Institute for Research in Biomedicine (IRB)
Summary:
Scientists from the Institute for Research in Biomedicine (IRB Barcelona), the Life Sciences Program at the Barcelona Supercomputing Center (BSC) and the National Institute for Bioinformatics (INB) have published a provisional "atlas" of the dynamic behaviour of proteins in the prestigious scientific journal, Proceedings of the National Academy of Sciences.

Scientists from the Institute for Research in Biomedicine (IRB Barcelona), the Life Sciences Programme at the Barcelona Supercomputing Center (BSC) and the National Institute for Bioinformatics (INB) have published a provisional "atlas" of the dynamic behaviour of proteins in the prestigious scientific journal, Proceedings of the National Academy of Sciences USA.

Proteins determine the shape and structure of cells and drive nearly all of a cell's vital processes. All proteins carry out their functions according to the same process -- by binding with other molecules. Now, the scientists have compiled a map that shows them how proteins can move and form complexes, a valuable tool that will help them understand the basic functions of the molecules, but also what happens when they function incorrectly. Such a map opens vast possibilities for the design of new drugs.

The goal of this study is to define a map of the dynamic properties of a very representative group of proteins. This involves taking stock of the basic rules that govern the flexibility of proteins and allows scientists to predict the structures that these proteins can form based on the presence of ligands or modifications. This allows scientists to go beyond the traditional simple static vision of proteins, which has not been able to capture the subtle conformational changes necessary for proteins to function. These changes modify, for example, how proteins bind to metabolites or drugs.

This is the first study of a larger scientific project, called MoDel (Molecular Dynamics Extended Library), the scope of which is even more ambitious. "MoDel aims to establish a 'fourth dimension' for protein structures thereby providing a complete landscape of possible conformations for the entire proteome (the complete network of protein interactions in a cell), over time. In the near future, a biochemist will be able to understand the behaviour of a protein, or design a drug that can interact with that protein, drawing on not only the knowledge of a single structure, but of an entire repertory spontaneously occurring in physiological conditions," says project director Modesto Orozco, principal investigator of the Molecular Modelling and Bioinformatics group at IRB Barcelona, director of the Department of Life Sciences of the BSC, and Professor in the Department of Biochemistry at the University of Barcelona.

The project, financed by Genome Espaρa (through the National Institute for Bioinformatics), the Ministry of Education and Science, and the Government of Catalonia, is the joint effort of a multidisciplinary team of 15 scientists using the computing resources of the MareNostrum supercomputer, the most powerful computer in Europe, and ranked 5th in the world. During the past year, the study has involved half a million hours of computing time and 200 processors working in parallel -- the equivalent of 57 years of computing time on a personal computer. "To attempt this project without the MareNostrum supercomputer would have simply been impossible," affirms Professor Orozco. Indeed, powerful tools such as MareNostrum are allowing bioinformaticists to make unprecedented advances in the understanding of biological processes.

Source article: M.Rueda, C.Ferrer, T.Meyer, A.Pιrez, J.Camps, A.Hospital, J.L.Gelpν and M.Orozco. "A consensus view of protein dynamics". Proc. Natl. Acad. Sci. USA. (2007) 104, 796-801.


Story Source:

The above story is based on materials provided by Institute for Research in Biomedicine (IRB). Note: Materials may be edited for content and length.


Cite This Page:

Institute for Research in Biomedicine (IRB). "Spanish Scientists Reveal Dynamic Map Of Proteins, Possibilities For New Drugs." ScienceDaily. ScienceDaily, 10 January 2007. <www.sciencedaily.com/releases/2007/01/070109142024.htm>.
Institute for Research in Biomedicine (IRB). (2007, January 10). Spanish Scientists Reveal Dynamic Map Of Proteins, Possibilities For New Drugs. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2007/01/070109142024.htm
Institute for Research in Biomedicine (IRB). "Spanish Scientists Reveal Dynamic Map Of Proteins, Possibilities For New Drugs." ScienceDaily. www.sciencedaily.com/releases/2007/01/070109142024.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins