Featured Research

from universities, journals, and other organizations

Storing Carbon Dioxide Below Ground May Prevent Polluting Above

Date:
February 8, 2007
Source:
Massachusetts Institute of Technology
Summary:
A new analysis led by an MIT scientist describes a mechanism for capturing carbon dioxide emissions from a power plant and injecting the gas into the ground, where it would be trapped naturally as tiny bubbles and safely stored in briny porous rock.

Carbon dioxide could be injected underground into the briny porous rock below. Most of the CO2 gas would be immobilized (light blue), trapped as small bubbles (white) in the pore space of the rock (gray). Only a small portion of the CO2 (dark blue) will continue to flow up towards the impermeable layer of caprock (yellow).
Credit: Image Ruben Juanes

A new analysis led by an MIT scientist describes a mechanism for capturing carbon dioxide emissions from a power plant and injecting the gas into the ground, where it would be trapped naturally as tiny bubbles and safely stored in briny porous rock.

Related Articles


This means that it may be possible for a power plant to be built in an appropriate location and have all its carbon dioxide emissions captured and injected underground throughout the life of the power plant, and then safely stored over centuries and even millennia. The carbon dioxide eventually will dissolve in the brine and a fraction will adhere to the rock in the form of minerals such as iron and magnesium carbonates.

Carbon dioxide is one of the primary greenhouse gases contributing to global warming. Studies have shown that reducing carbon dioxide emissions or capturing and storing the emissions underground in a process called sequestration is vital to the health of our planet. But one of the biggest risks of any sequestration project is the potential leak of the injected gas back into the atmosphere through abandoned wells or underground cracks.

In a paper published in a recent issue of Water Resources Research, MIT Professor Ruben Juanes and co-authors assert that injected carbon dioxide will likely not flow back up to the surface and into the atmosphere, as many researchers fear.

"We have shown that this is a much safer way of disposing of CO2 than previously believed, because a large portion-maybe all-of the CO2 will be trapped in small blobs in the briny aquifer," said Juanes, a professor of civil and environmental engineering. "Based on experiments and on the physics of flow and transport, we know that the flow of the CO2 is subject to a safety mechanism that will prevent it from rising up to the top just beneath the geologic cap."

Researchers have considered the possibility of sequestering CO2 beneath the Earth's surface in at least three types of geologic formations: depleted oil and gas fields, unminable coal seams and deep saline aquifers. Juanes' research dealt with the third category-porous rock formations bearing brackish water that are ubiquitous underground.

The study shows that carbon dioxide could be compressed as it leaves the power plant and injected through a well deep underground into a natural sublayer consisting of porous rock, such as sandstone or limestone, saturated with saltwater. Because of its buoyancy, the injected gas will form a plume and begin to rise through the permeable rock.

Once the injection stops, perhaps after the power plant has operated for decades, the plume will continue to rise, but now saltwater will close around the back of the gas plume. The saltwater and carbon dioxide will begin to juggle for position while flowing through the tiny pores in the rock and, because rock's surface attracts water, the water will cling to the inner surface of the pores.

These wet layers will swell, causing the pores to narrow and constrict the flow of carbon dioxide until the once-continuous plume of gas breaks into small bubbles or blobs, which will remain trapped in the pore space.

"As it rises, the CO2 plume leaves a trail of immobile, disconnected blobs, which will remain trapped in the pore space of the rock, until they slowly dissolve and, on an even larger timescale, react with rock minerals," said Juanes. "It is a good example of how a process that occurs at the microscopic scale affects the overall pattern of the flow at the geologic scale."

"We also found that by injecting water along with the CO2, we can optimize sequestration," said Elizabeth Spiteri of Chevron Energy Technology Co., who worked on this research while a graduate student at Stanford University, where Juanes taught before joining the MIT faculty. "I had always wanted to dig deeper into the physics that dictate the distribution of gases and liquids in the Earth's subsurface. This turns out to be essential for CO2 sequestration, as well as predicting groundwater contamination and enhancing recovery from mature oil fields."

The other co-authors are Martin Blunt of Imperial College London and Franklin Orr Jr. of Stanford University. The work was funded by industrial affiliates of the Petroleum Research Institute at Stanford University.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Storing Carbon Dioxide Below Ground May Prevent Polluting Above." ScienceDaily. ScienceDaily, 8 February 2007. <www.sciencedaily.com/releases/2007/02/070207171554.htm>.
Massachusetts Institute of Technology. (2007, February 8). Storing Carbon Dioxide Below Ground May Prevent Polluting Above. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2007/02/070207171554.htm
Massachusetts Institute of Technology. "Storing Carbon Dioxide Below Ground May Prevent Polluting Above." ScienceDaily. www.sciencedaily.com/releases/2007/02/070207171554.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Lava on Track to Hit Hawaii Market

Raw: Lava on Track to Hit Hawaii Market

AP (Dec. 19, 2014) Lava from an active volcano on Hawaii's Big Island slowed slightly but stayed on track to hit a shopping center in the small town of Pahoa. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Arctic Warming Twice As Fast As Rest Of Planet

Arctic Warming Twice As Fast As Rest Of Planet

Newsy (Dec. 18, 2014) The Arctic is warming twice as fast as the rest of the planet, thanks in part to something called feedback. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins