Featured Research

from universities, journals, and other organizations

Is There A Pilot In The Insect?

Date:
February 19, 2007
Source:
CNRS
Summary:
Researchers in France have revealed an automatic mechanism called the "optic flow regulator" that controls the lift force in insects. They then developed a captive flying robot, a micro helicopter that can reproduce much of the mysterious natural insect behavior.

Fly equipped with a "leash" of microelectrodes that permit the recording of activity of certain visual neurons during locomotion.
Credit: Image copyright CNRS Photothèque / Hubert RAGUET

When they fly, insects use their vision for piloting, just like human pilots. The electric signals from their facetted eyes travel through specialized neurons to stimulate the wing muscles, which let the insects correct their flight and avoid crashes. Could these same neurons be used in a sort of "automatic pilot"?

This is what Nicolas Franceschini, Franck Ruffier and Julien Serres have just shown. These biorobotics specialists from the Movement and Perception Laboratory (CNRS/Université de la Méditerranée) in Marseille, France have revealed an automatic mechanism called the "optic flow regulator" that controls the lift force. The researchers obtained these results by modeling the overland flight navigation of insects using experiments carried out on OCTAVE, a captive flying robot microhelicopter that can reproduce much of the mysterious natural insect behavior. Their work is published online in Current Biology, February 8, 2007.

How does a tiny creature like a fly or a bee, with a brain the size of a pinhead, manage to make such a magnificent job of controlling its flight, and avoid crashing to the ground?

Today it is known that the sensory motor prowess of these flying miniatures depends on the nervous system, made up of between one hundred thousand and one million neurons. When an insect, bird or pilot flies over land, the image of the ground below sweeps from front to back across the central part of the visual field, creating an "optic flow", which is defined as the angular speed at which the ground contrasts move past. By definition, this angular speed is equal to the ratio of the horizontal speed and the altitude. What these authors call an "optic flow regulator" is a reflex that keeps the optic flow, and thus the speed/altitude ratio, at a constant value. If the insect changes speed, this reflex will make it change altitude so that ratio remains constant. Adjusting the speed/altitude ratio means that the insect has no need to measure either its speed or its altitude.

If there is a strong headwind, its forward speed will be reduced. Thus its optic flow regulator will constantly force it to reduce altitude so that the optic flow always remains at the reference value. The insect has to make a forced landing against the wind, but a safe landing, because it takes place at a vertical speed of zero. Reactions of this type to a headwind have been described countless times in insects and even in birds. They are also observed on the microhelicopter each time it faces a laboratory-produced headwind, reinforcing the hypothesis that flying creatures have an optic flow regulator.

The very simple control scheme proposed takes into account 70 years of often surprising observations of the behavior of winged insects. It accounts for the fact not only that insects descend facing a headwind and ascend with a tailwind, but also that honeybees land with a constant slope and drown when crossing mirror-smooth water1.

Behind this astonishing behavior, hidden in the insect's cockpit, are movement detector neurons that act as optic flow sensors. The team patiently decoded the functioning of these neurons using ultra-fine microelectrodes (with a diameter of a thousandth of a millimeter) and a specially designed microscope. They then produced an electronic microcircuit based on this principle. The most recent version weighs only 0.2 grams. This is the neuron that does most of the work on board the microhelicopter.

The optic flow regulator helps explain how an insect manages to fly, even in unfavorable wind conditions, without measuring its ground height, groundspeed or descent speed, in other words without using any of the usual aircraft onboard flight aids like radar, GPS, radio-altimeters and variometers. An insect brain wouldn't cope with these cumbersome, heavy, energy-consuming devices.

This important work shows that this new science called biorobotics, that the team from Marseille started in 1985, is important both for fundamental and applied research. The method consists in using robotics models to test biological principles that are perceived only vaguely at the outset.

These hidden forces underlying animal behavior can then be understood more exactly by permanently shuttling between biology and robotics. These principles have been tried and tested for millions of years, and today they need to be applied to aerospace, because the phases in which an airship or a space module navigates close to the ground are absolutely crucial.

The researchers and CNRS have filed an international patent for the "fly automatic pilot".

1. When ripples are totally absent from a pond surface, for example, the (natural and artificial) optic flow sensors are put out of action because there are no contrasts. This results in insects being drawn irresistibly downwards.

Reference: A bio-inspired flying robot sheds light on insect piloting abilities, Current biology 17, 4 (February 20). Franceschini, N., Ruffier, F., Serres, J. (2007).


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Cite This Page:

CNRS. "Is There A Pilot In The Insect?." ScienceDaily. ScienceDaily, 19 February 2007. <www.sciencedaily.com/releases/2007/02/070213142718.htm>.
CNRS. (2007, February 19). Is There A Pilot In The Insect?. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2007/02/070213142718.htm
CNRS. "Is There A Pilot In The Insect?." ScienceDaily. www.sciencedaily.com/releases/2007/02/070213142718.htm (accessed September 21, 2014).

Share This



More Matter & Energy News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
New Music With Recycled Instruments at Colombia Fest

New Music With Recycled Instruments at Colombia Fest

AFP (Sep. 19, 2014) — Jars, bottles, caps and even a pizza box, recovered from the trash, were the elements used by four musical groups at the "RSFEST2014 Sonorities Recycling Festival", in Colombian city of Cali. Duration: 00:49 Video provided by AFP
Powered by NewsLook.com
Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) — Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins