Featured Research

from universities, journals, and other organizations

Biochip Allows Genes To Express Themselves

Date:
February 18, 2007
Source:
John Wiley & Sons, Inc.
Summary:
Biochip platforms that work as artificial cells are attractive for medical diagnostics, interrogation of biological processes, and for the production of important biomolecules. In a major breakthrough, a group of researchers at the Weizmann Institute of Science in Israel, led by Roy Bar-Ziv, have designed a molecule affectionately called the "daisy" that is able to bind genes onto chips in miniature patterned arrays.

Biochip platforms that work as artificial cells are attractive for medical diagnostics, interrogation of biological processes, and for the production of important biomolecules. However, to match the complexity of nature, the biochips need to be designed such that proteins, DNA, and other important biological components can be located in specific, spatially well-defined regions on the chips. This allows these devices to mimic the complex, sequential, and often cascaded events involved in biological processes.

Related Articles


Now, in a major breakthrough, a group of researchers at the Weizmann Institute of Science in Israel, led by Roy Bar-Ziv, in collaboration with Margherita Morpurgo from the University of Padova in Italy, have designed a molecule affectionately called the “daisy” that is able to bind genes onto chips in miniature patterned arrays.

Bar-Ziv and co-workers have been able to use the daisy to pattern tiny regions of double-stranded DNA onto silicon dioxide surfaces. Indeed, these immobilized genes are able to conduct their business on patterned silicon substrates without the need for living cells. These biochips can act as protein microtraps, selectively trapping specific proteins from crude cell extracts with high spatial resolution.

Moreover, the gene sequences immobilized on the biochips can be used for the on-chip production of proteins by transcription/translation processes such as those occurring within cells. Bar-Ziv and his colleagues have also demonstrated the integration of these systems with microfluidics. Integration with flow systems is of interest for the fabrication of miniature assembly lines on chips, wherein proteins can be synthesized on the chips and transported to their final destinations through microfluidic channels.

In a remarkable demonstration of the utility of the daisy approach, the researchers have patterned two different genes as alternating stripes on a biochip. The protein synthesized on one stripe diffuses to the second stripe where it regulates the synthesis of a second protein. More complex artificial gene circuits can be envisioned by extending this protocol, and thus the biochips may be able to carry out complex cascaded information-processing functions, mimicking those in living organisms.

“This approach is a first step towards functional cell-free biochemical factories for synthesizing biomolecules and decision-making modules”, said Bar-Ziv. Amnon Buxboim, a Ph.D. student in Bar-Ziv's group and one of the primary researchers involved in this work, added that placing genes close to one another on a surface provides opportunities not available in bulk solution by allowing communication between individual gene sequences in these artificial cells.


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Biochip Allows Genes To Express Themselves." ScienceDaily. ScienceDaily, 18 February 2007. <www.sciencedaily.com/releases/2007/02/070215112804.htm>.
John Wiley & Sons, Inc.. (2007, February 18). Biochip Allows Genes To Express Themselves. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2007/02/070215112804.htm
John Wiley & Sons, Inc.. "Biochip Allows Genes To Express Themselves." ScienceDaily. www.sciencedaily.com/releases/2007/02/070215112804.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins