Featured Research

from universities, journals, and other organizations

Rare Cell Prevents Rampant Brain Activity

Date:
March 4, 2007
Source:
Karolinska Institutet
Summary:
One of the mysteries of the brain is how it avoids ending up in a state of chaos, something which happens only on exceptional occasions, when it can lead to epileptic fits. Scientists have now uncovered a new mechanism controlling how the brain keeps its neuronal activity in check.

One of the mysteries of the brain is how it avoids ending up in a state of chaos, something which happens only on exceptional occasions, when it can lead to epileptic fits. Scientists at Karolinska Institutet have now uncovered a new mechanism controlling how the brain keeps its neuronal activity in check.

Related Articles


The human brain consists of around a hundred million nerve cells linked together by around ten billion contact junctions called synapses. The activity of this extremely complex network is regulated through a dynamic balance between excitatory signals, which are transmitted by one type of synapse, and inhibitory counter-signals, which are transmitted by another.

An imbalance between excitatory and inhibitory activity is associated with diseases such as epilepsy, schizophrenia, and anxiety. But despite the fact that excitatory synapses are much more common than their inhibitory counterparts, the system is generally kept in a state of equilibrium. Just how the brain manages this feat is a puzzle to scientists.

Scientists at Karolinska Institutet and the Brain Mind Institute in Switzerland have now discovered a mechanism that might explain how the most common type of neuron in the cerebral cortex -- the pyramid cell -- is prevented from becoming over-activated. Their results show that a rarer cell type that links collections of pyramid cells -- called a Martinotti cell -- acts as a kind of safety device. When a Martinotti cell receives signals above a certain frequency, it responds by sending back inhibitory signals that moderate surrounding pyramid cells.

Gilad Silberberg, one of the researchers behind the study, believes that the mechanism is essential to understanding brain disorders like epilepsy.

"A characteristic feature of epilepsy is the hyperactivation of cortical pyramid cells, which is exactly what this mechanism inhibits. It is possible that epilepsy is related to a deficit of Martinotti cells or a deficiency of Martinotti activity in the brain."


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Cite This Page:

Karolinska Institutet. "Rare Cell Prevents Rampant Brain Activity." ScienceDaily. ScienceDaily, 4 March 2007. <www.sciencedaily.com/releases/2007/03/070302111129.htm>.
Karolinska Institutet. (2007, March 4). Rare Cell Prevents Rampant Brain Activity. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2007/03/070302111129.htm
Karolinska Institutet. "Rare Cell Prevents Rampant Brain Activity." ScienceDaily. www.sciencedaily.com/releases/2007/03/070302111129.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins