Featured Research

from universities, journals, and other organizations

Gas Movement A Key To Mount St. Helens Explosions

Date:
March 6, 2007
Source:
Oregon State University
Summary:
A study being published this week suggests that gas and vapor movement to the top of the magma body may have caused fairly rapid increases in pressure and could have been the triggering mechanism that caused Mount St. Helens to erupt in both 1980 and 2004.

Crater/Plume image, Mount St. Helens. USGS photograph taken at 12:16:01 PDT on October 1, 2004, by John Pallister
Credit: USGS/Cascades Volcano Observatory

A study being published this week suggests that gas and vapor movement to the top of the magma body may have caused fairly rapid increases in pressure and could have been the triggering mechanism that caused Mount St. Helens to erupt in both 1980 and 2004.

Related Articles


Researchers used analysis of the trace element lithium to reach these conclusions, finding that crystals in the erupting lava were highly enriched with lithium in the first few weeks after each eruption, but then levels dropped back to a normal range. This suggests, they said, that lithium diffused into rising bubbles and added to a gas-rich pocket that formed just in the months preceding the eruption.

The study was just published in Geology, a professional journal, by scientists from Oregon State University, the U.S. Geological Survey, and five other universities.

“An explosive volcano may be a little like a shaken-up pop bottle,” said Adam Kent, an OSU assistant professor of geosciences. “This research suggests that gases move to the top of magma chambers under volcanoes, where they can help break through the overlying crust and cause an eruption. This is leading us to a better understanding of how volcanoes behave and what the potential triggers are.”

The findings, Kent said, do not yet have great predictive value – for one thing, researchers have no way of getting into the hot magma under a live volcano to check its gas levels. But when an eruption first begins, analysis of its rock samples and how enriched they are in lithium and other volatile gases may help provide clues to the nature and possible severity of the event.

In September of 2004, Mount St. Helens had some of its first significant explosions and dome building since 1986. There had been numerous smaller eruptions in the six years following the cataclysmic explosion of May, 1980. After it became active again in 2004, large amounts of lava poured out – 81 million cubic meters by last spring. The eruptive phase has been vigorous, pouring forth about as much lava as all the previous dome-building eruptions of the 1980s in about half the time. It’s continuing and could go on for years, Kent said.

The newest findings were made possible by some “helicopter dredging” done by the U.S. Geological Survey, scooping up material coming out after the 2004 eruption. A laser technique called “inductively coupled plasma mass spectrometry” allowed scientists to determine element concentrations at parts per million, and the one thing that stood out was the high level of lithium immediately following the first eruption.

“We still don’t know exactly what causes a volcano to erupt, especially when they have been quiet for a long time,” Kent said. “Increases in gas pressure have been one of the suspected causes, but it is often difficult to prove this.

“What this study indicates is that in the months prior to an eruption, there was in fact a rapid increase in vapor pressure in the magma stored under the volcano,” he said. “The lithium, which is soluble as a vapor and very mobile, rose rapidly along with other gases just prior to the eruption.”

As a technique for future use, Kent said, erupting rocks that are high in volatile elements such as lithium may be a clue that gas levels are high and the eruption could be more intense and continuing. This process may be fairly common to other explosive volcanoes around the world, he said.

Other collaborators on the study included Michael C. Rowe from OSU, and researchers from the University of Bristol, University of Oregon, University of California/Davis, University of Washington, and University of Iowa.

The study was funded by the National Science Foundation.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Cite This Page:

Oregon State University. "Gas Movement A Key To Mount St. Helens Explosions." ScienceDaily. ScienceDaily, 6 March 2007. <www.sciencedaily.com/releases/2007/03/070305144749.htm>.
Oregon State University. (2007, March 6). Gas Movement A Key To Mount St. Helens Explosions. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2007/03/070305144749.htm
Oregon State University. "Gas Movement A Key To Mount St. Helens Explosions." ScienceDaily. www.sciencedaily.com/releases/2007/03/070305144749.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins