Featured Research

from universities, journals, and other organizations

Invisible For Electrons: Scientists Fabricate Ultra-thin Membranes

Date:
March 9, 2007
Source:
Max-Planck-Gesellschaft
Summary:
As thin as it gets: the carbon membranes recently created by Max Planck scientists are only one atom thick. For electrons, such membranes are almost completely transparent -- using an electron microscope, scientists may thus be able to examine absorbed individual molecules on the membranes, and image the atomic structure of complex biological molecules.

Model of a graphene membrane - only one atom thick.
Credit: Image courtesy of Max-Planck-Gesellschaft

Researchers at the Stuttgart-based Max Planck Institute for Solid State Research and the University of Manchester have created the thinnest membranes possible: They consist of only a single layer of carbon atoms, called graphene.

Related Articles


Despite the thinness of the membranes, they are extremely stability. The reason for this is that the graphene membranes are not perfectly flat, but slightly corrugated - a form that gives the ultra-thin material stability - comparable with corrugated cardboard. "These two-dimensional membranes are completely different to ordinary three-dimensional crystals," says Dr. Jannik Meyer from the Max Planck Institute for Solid State Research. "We have just begun to explore the fundamental properties and possible applications."

Two years ago, scientists discovered a new class of thin materials that can be described as individual atomic planes pulled out of bulk crystals. These one-atom thick materials have rapidly become one of the most provocative topics in physics. However, it had remained doubtful whether such materials could exist without the support of a substratum.

Now, the research team headed by Dr. Jannik Meyer have produced such free-hanging membranes - specifically, from a single layer of carbon atoms called graphene. In order to fabricate graphene, only a pencil is principally needed: By rubbing ordinary graphite onto a surface, flakes of varying thickness break off from the layered material. Some layers are thereby formed that are only one atom thick. In order to find these and further process them, the scientists used a microfabrication method that is also used in the production of microprocessors. As a base, the researchers used a silicon crystal with an exactly calibrated oxide film; this was the only way that the researchers could make out the graphene mono-layer in the microscope by means of its very slight colour change. They then overlaid this with a metallic scaffold made from very fine gold wires having gaps between the wires 100 times smaller than the diameter of a strand of hair. In the next step, the researchers dissolved the silicon substratum in various acids. This permitted the graphene to hang freely on the scaffold.

Fabricated in this manner, a graphene membrane between the gold wires has a surface of approximately one square micrometre, which is only a millionth of a square millimetre. However, this surface still contains 30 million carbon atoms that are all arranged on the free-hanging membrane.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Max-Planck-Gesellschaft. "Invisible For Electrons: Scientists Fabricate Ultra-thin Membranes." ScienceDaily. ScienceDaily, 9 March 2007. <www.sciencedaily.com/releases/2007/03/070306101046.htm>.
Max-Planck-Gesellschaft. (2007, March 9). Invisible For Electrons: Scientists Fabricate Ultra-thin Membranes. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2007/03/070306101046.htm
Max-Planck-Gesellschaft. "Invisible For Electrons: Scientists Fabricate Ultra-thin Membranes." ScienceDaily. www.sciencedaily.com/releases/2007/03/070306101046.htm (accessed October 30, 2014).

Share This



More Matter & Energy News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Lowe's Testing Robot Sales Assistants in California Store

Lowe's Testing Robot Sales Assistants in California Store

Buzz60 (Oct. 29, 2014) Lowe’s is testing out what it’s describing as a robotic shopping assistant in one of its Orchard Supply Hardware Stores in California. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins