Featured Research

from universities, journals, and other organizations

Blood Cancer Stopped In Mice By Shortening The Ends Of Chromosomes

Date:
April 26, 2007
Source:
Johns Hopkins Medical Institutions
Summary:
Medical researchers have stopped a form of blood cancer in its tracks in mice by engineering and inactivating an enzyme, telomerase, thereby shortening the ends of chromosomes, called telomeres.

A Johns Hopkins team has stopped a form of blood cancer in its tracks in mice by engineering and inactivating an enzyme, telomerase, thereby shortening the ends of chromosomes, called telomeres.

"Normally, when telomeres get critically short, the cell commits suicide as a means of protecting the body," says Carol Greider, Ph.D., the Daniel Nathans chair of molecular biology and genetics at Johns Hopkins. Her study, appearing online at Cancer Cell, uncovers an alternate response where cells simply - and permanently - stop growing, a process known as senescence.

In an unusual set of experiments, the research team first mated mice with nonoperating telomerase to mice carrying a mutation that predisposed them to Burkitt's lymphoma, a rare but aggressive cancer of white blood cells. Telomerase helps maintain the caps or ends of chromosomes called telomeres, which shrink each time a cell divides and eventually - when the chromosomes get too short - force the cell to essentially commit suicide. Such cell death is natural, and when it fails to happen, the result may be unbridled cell growth, or cancer.

The first generation pups born to these mice contained no telomerase and very long telomeres. These mice all developed lymphomas by the time they were 7 months old. The researchers then continued breeding the mice to see what would happen in later generations. By the fifth generation, the researchers discovered that the mice had short telomeres and stopped developing lymphomas.

When the researchers blocked the suicide machinery in these fifth-generation mice, they were very surprised to find that the mice still remained cancer free.

"We were confused as to what was going on; we thought for sure that blocking the cells' ability to commit suicide would lead to the cancer's returning," says Greider. A closer look showed microtumors in the mice's lymph nodes that had begun the road to cancer, but stopped, falling instead into a state of senescence.

"They don't die, they don't divide, they just sit there in permanent rest," says Greider. Greider, who won the Lasker Award in 2006 for her discovery of telomerase, says further study of the road to senescence should suggest new ways of preventing or treating cancer by interfering safely with telomerase and the cell-suicide system.

The research was funded by the National Institutes of Health. Authors on the paper are David Feldser and Carol Greider, both of Johns Hopkins.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins Medical Institutions. "Blood Cancer Stopped In Mice By Shortening The Ends Of Chromosomes." ScienceDaily. ScienceDaily, 26 April 2007. <www.sciencedaily.com/releases/2007/04/070425142107.htm>.
Johns Hopkins Medical Institutions. (2007, April 26). Blood Cancer Stopped In Mice By Shortening The Ends Of Chromosomes. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2007/04/070425142107.htm
Johns Hopkins Medical Institutions. "Blood Cancer Stopped In Mice By Shortening The Ends Of Chromosomes." ScienceDaily. www.sciencedaily.com/releases/2007/04/070425142107.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins