Featured Research

from universities, journals, and other organizations

Flexible Genes Allow Ants To Change Destiny

Date:
May 28, 2007
Source:
University of Leeds
Summary:
The discovery of a flexible genetic coding in leaf-cutting ants sheds new light on how one of nature's ultimate self-organizing species breeds optimum numbers of each worker type to ensure the smooth running of the colony.

The discovery of a flexible genetic coding in leaf-cutting ants sheds new light on how one of nature’s ultimate self-organising species breeds optimum numbers of each worker type to ensure the smooth running of the colony.

Related Articles


Research at the University of Leeds shows that despite an inherited genetic pre-disposition to grow into a particular worker caste, ant larvae can be triggered by environmental stimuli to switch development depending on colony’s workforce needs.

“Our previous research suggested that genetics did indeed play a part in caste determination - but not how much of a part,” says evolutionary biologist Dr William Hughes of the Faculty of Biological Sciences. “This left us with a conundrum: ant colonies are a model of social efficiency, yet if genetics ruled caste development, then this would be a very rigid - and therefore very inefficient - method of ensuring an optimum workforce balance.”

“It seems that ants have evolved their own solution to this problem. Given that it takes an ant eight weeks to develop from an egg into an adult, ant colonies have to predict the need for different types of worker well in advance, and a flexible combination of nature and nurture will help them do this.”

Dr Hughes’ research used colonies of Acromyrmex leaf-cutting ants, which have two distinct worker castes: large workers, which forage and build the nest and small workers, which care for the ant larvae and the fungus they eat. Worker ants are always female and the large workers are up to three times the size of the smaller ones. “Males don’t do much other than eat, fly off, mate and die,” says Dr Hughes.

As leaf-cutting queens mate with multiple males, they make good candidates for examining role of genetics in caste determination. With the same mother and rearing conditions, the only differences between workers within a colony will be the genes inherited from their different fathers.

To see if genetic pre-disposition was fixed, all the large workers were removed from a colony to stimulate the need for more larvae to develop into this caste. The results showed that genetic types that didn’t normally develop into large workers did so when the need for this caste was increased, proving that the genetic influence is adaptable.

Leaf-cutting ants have an enormous ecological impact because of the amount of leaves they harvest and are a significant pest for several crops. They particularly like citrus and Eucalyptus trees and a colony of the Atta species can defoliate a tree in a single night. They have been estimated to remove 17 per cent of leaf production in some tropical forests. Understanding how colonies function may well offer new opportunities to control their impact.

“We don’t yet know what environmental cues influence the caste destiny of the larvae – it could be the food they’re fed, the temperature, or even pheromones,” says Dr Hughes.

Dr Hughes’ research has been published online in Proceedings of the Royal Society B: Biological Sciences.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Cite This Page:

University of Leeds. "Flexible Genes Allow Ants To Change Destiny." ScienceDaily. ScienceDaily, 28 May 2007. <www.sciencedaily.com/releases/2007/05/070524145012.htm>.
University of Leeds. (2007, May 28). Flexible Genes Allow Ants To Change Destiny. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2007/05/070524145012.htm
University of Leeds. "Flexible Genes Allow Ants To Change Destiny." ScienceDaily. www.sciencedaily.com/releases/2007/05/070524145012.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins