Featured Research

from universities, journals, and other organizations

Scientists Link Cell's Protein Recycling Systems

Date:
June 14, 2007
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have discovered a molecular link between the cell's two major pathways for breaking down proteins and have succeeded in using this link to rescue neurodegenerative diseases in a simple animal model.

Eye in fruit fly model of Alzheimer's disease appears rough and deformed. Alzheimer's fly plus HDAC6 appears normal.
Credit: Image courtesy of University of Pennsylvania School of Medicine

Many age-related neurological diseases are associated with defective proteins accumulating in nerve cells, suggesting that the cell’s normal disposal mechanisms are not operating correctly. Now, researchers at the University of Pennsylvania School of Medicine have discovered a molecular link between the cell’s two major pathways for breaking down proteins and have succeeded in using this link to rescue neurodegenerative diseases in a simple animal model.

The cell has two internal pathways for breaking down proteins. The ubiquitin-proteasome pathway marks unwanted proteins with ubiquitin tags and shuttles them for rapid breakdown to a complicated structure called the proteasome. The second is the autophagy-lysosomal system, a more general process in which proteins are surrounded by membranes inside the cell for bulk digestion.

“The dogma has been that the autophagy-lysosomal and the proteasomal systems are trains that run on different tracks, with similar purposes, but no point of intersection,” explains senior author J. Paul Taylor, MD, PhD, Assistant Professor of Neurology. “The new finding directly challenges this thinking by showing that one system can be induced to compensate for the other. Cells are able to shift proteins between the systems. We think that this molecular link can be used to benefit a wide variety of neurodegenerative diseases because accumulation of toxic proteins is a common underlying feature of age-related neurodegeneration.”

Taylor and his group study fruit flies in which the proteasome is disabled by a genetic mutation, which results in neurodegeneration. They use the fly eye, a neuron-rich tissue, as a surrogate for the brain because it is easy to visualize. They discovered that making the lysosomal system more or less active dramatically influenced the severity of neurodegeneration.

“We found that whenever we knocked the lysosome system down, neurodegeneration always got worse,” says Taylor. “Then when we activated the autophagy system by feeding the flies a drug called rapamycin, neurodegeneration was prevented.” The accumulated misfolded proteins were cleared out by the lysosome system. “Then we knew that this system can compensate for the impaired proteasome function, which in itself tells us that the two pathways intersect,” says Taylor. “The question was, ‘How is this working?’”

The Role of HDAC6

“That’s where the power of fruit flies comes in,” Taylor explains. “We can use fruit flies to rapidly screen through many genes to find the one we’re interested in. In the process of screening, our attention was drawn to HDAC6 because we already knew that it could bind to ubiquitin-tagged proteins and transport them within the cell. So we wondered, could HDAC6 be the link?”

Taylor’s group showed that if the HDAC6 gene is knocked out, inducing autophagy no longer rescues the fly eyes from neurodegeneration. Therefore, autophagy requires HDAC6 to work. They also showed that by simply expressing extra HDAC6, neurodegeneration was prevented in flies with proteasome impairment. Taylor’s group then moved on to fly models of human neurodegenerative disease and showed that they, too, are rescued by over-expression of HDAC6.

Therefore, the researchers suggest that the level of the HDAC6 in a cell regulates its sensitivity to accumulation of misfolded proteins, and that increasing the activity of HDAC6 can prevent the degeneration normally associated with accumulating old, damaged proteins. The researchers suggest further that when proteasomes are impaired or overwhelmed, which leads to accumulation of defective proteins, HDAC6 facilitates delivery to the autophagy-lysosomal system for degradation. “That’s how we think HDAC6 links the two systems,” says Taylor.

Taylor and his team are now testing the ability of HDAC6 to prevent neurodegeneration in several mouse models, including motor neuron disease, Parkinson’s disease, and Huntington’s disease. They are also attempting to identify pharmacologic approaches to augmenting HDAC6 activity.

The study appeared recently in Nature. Penn co-authors are Udai Bhan Pandey, Zhiping Nie, Brett A. McCray, Gillian P. Ritson, Natalia B. Nedelsky, and Stephanie Schwartz.

This work was funded by the Kennedy’s Disease Association, the Morton Reich Research Fund, and the National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Scientists Link Cell's Protein Recycling Systems." ScienceDaily. ScienceDaily, 14 June 2007. <www.sciencedaily.com/releases/2007/06/070613174817.htm>.
University of Pennsylvania School of Medicine. (2007, June 14). Scientists Link Cell's Protein Recycling Systems. ScienceDaily. Retrieved July 26, 2014 from www.sciencedaily.com/releases/2007/06/070613174817.htm
University of Pennsylvania School of Medicine. "Scientists Link Cell's Protein Recycling Systems." ScienceDaily. www.sciencedaily.com/releases/2007/06/070613174817.htm (accessed July 26, 2014).

Share This




More Mind & Brain News

Saturday, July 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins