Featured Research

from universities, journals, and other organizations

Scientists Link Cell's Protein Recycling Systems

Date:
June 14, 2007
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have discovered a molecular link between the cell's two major pathways for breaking down proteins and have succeeded in using this link to rescue neurodegenerative diseases in a simple animal model.

Eye in fruit fly model of Alzheimer's disease appears rough and deformed. Alzheimer's fly plus HDAC6 appears normal.
Credit: Image courtesy of University of Pennsylvania School of Medicine

Many age-related neurological diseases are associated with defective proteins accumulating in nerve cells, suggesting that the cell’s normal disposal mechanisms are not operating correctly. Now, researchers at the University of Pennsylvania School of Medicine have discovered a molecular link between the cell’s two major pathways for breaking down proteins and have succeeded in using this link to rescue neurodegenerative diseases in a simple animal model.

The cell has two internal pathways for breaking down proteins. The ubiquitin-proteasome pathway marks unwanted proteins with ubiquitin tags and shuttles them for rapid breakdown to a complicated structure called the proteasome. The second is the autophagy-lysosomal system, a more general process in which proteins are surrounded by membranes inside the cell for bulk digestion.

“The dogma has been that the autophagy-lysosomal and the proteasomal systems are trains that run on different tracks, with similar purposes, but no point of intersection,” explains senior author J. Paul Taylor, MD, PhD, Assistant Professor of Neurology. “The new finding directly challenges this thinking by showing that one system can be induced to compensate for the other. Cells are able to shift proteins between the systems. We think that this molecular link can be used to benefit a wide variety of neurodegenerative diseases because accumulation of toxic proteins is a common underlying feature of age-related neurodegeneration.”

Taylor and his group study fruit flies in which the proteasome is disabled by a genetic mutation, which results in neurodegeneration. They use the fly eye, a neuron-rich tissue, as a surrogate for the brain because it is easy to visualize. They discovered that making the lysosomal system more or less active dramatically influenced the severity of neurodegeneration.

“We found that whenever we knocked the lysosome system down, neurodegeneration always got worse,” says Taylor. “Then when we activated the autophagy system by feeding the flies a drug called rapamycin, neurodegeneration was prevented.” The accumulated misfolded proteins were cleared out by the lysosome system. “Then we knew that this system can compensate for the impaired proteasome function, which in itself tells us that the two pathways intersect,” says Taylor. “The question was, ‘How is this working?’”

The Role of HDAC6

“That’s where the power of fruit flies comes in,” Taylor explains. “We can use fruit flies to rapidly screen through many genes to find the one we’re interested in. In the process of screening, our attention was drawn to HDAC6 because we already knew that it could bind to ubiquitin-tagged proteins and transport them within the cell. So we wondered, could HDAC6 be the link?”

Taylor’s group showed that if the HDAC6 gene is knocked out, inducing autophagy no longer rescues the fly eyes from neurodegeneration. Therefore, autophagy requires HDAC6 to work. They also showed that by simply expressing extra HDAC6, neurodegeneration was prevented in flies with proteasome impairment. Taylor’s group then moved on to fly models of human neurodegenerative disease and showed that they, too, are rescued by over-expression of HDAC6.

Therefore, the researchers suggest that the level of the HDAC6 in a cell regulates its sensitivity to accumulation of misfolded proteins, and that increasing the activity of HDAC6 can prevent the degeneration normally associated with accumulating old, damaged proteins. The researchers suggest further that when proteasomes are impaired or overwhelmed, which leads to accumulation of defective proteins, HDAC6 facilitates delivery to the autophagy-lysosomal system for degradation. “That’s how we think HDAC6 links the two systems,” says Taylor.

Taylor and his team are now testing the ability of HDAC6 to prevent neurodegeneration in several mouse models, including motor neuron disease, Parkinson’s disease, and Huntington’s disease. They are also attempting to identify pharmacologic approaches to augmenting HDAC6 activity.

The study appeared recently in Nature. Penn co-authors are Udai Bhan Pandey, Zhiping Nie, Brett A. McCray, Gillian P. Ritson, Natalia B. Nedelsky, and Stephanie Schwartz.

This work was funded by the Kennedy’s Disease Association, the Morton Reich Research Fund, and the National Institute of Neurological Disorders and Stroke.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University of Pennsylvania School of Medicine. "Scientists Link Cell's Protein Recycling Systems." ScienceDaily. ScienceDaily, 14 June 2007. <www.sciencedaily.com/releases/2007/06/070613174817.htm>.
University of Pennsylvania School of Medicine. (2007, June 14). Scientists Link Cell's Protein Recycling Systems. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2007/06/070613174817.htm
University of Pennsylvania School of Medicine. "Scientists Link Cell's Protein Recycling Systems." ScienceDaily. www.sciencedaily.com/releases/2007/06/070613174817.htm (accessed October 20, 2014).

Share This



More Mind & Brain News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins