Featured Research

from universities, journals, and other organizations

Bioelectronics: Progress Toward Drug Screening With A Cell-transistor Biosensor

Date:
June 26, 2007
Source:
John Wiley & Sons, Inc.
Summary:
Researchers at the Max Planck Institute for Biochemistry in Martinsried/Munich have shown that bioelectronic hybrid systems are no longer just a utopian vision by coupling a receptor to a silicon chip by means of a cell-transistor interface.

To develop selective measurement techniques for diagnostics, drug research, and the detection of poisons, researchers would like to combine the high specificity of biochemical reactors with universal microelectronics. Now, researchers at the Max Planck Institute for Biochemistry in Martinsried/Munich have shown that such bioelectronic hybrid systems are no longer just a utopian vision. In the journal Angewandte Chemie, they describe the coupling of a receptor to a silicon chip by means of a cell–transistor interface.

Related Articles


Many receptors are coupled to ion channels within cell membranes. When the corresponding ligand binds to its receptor, the channel is opened, allowing ions to stream into the cell. With a few tiny electrodes (the patch-clamp technique), this stream of ions can be measured; however, this technique destroys the cell. A team headed by Peter Fromherz has now proven that things can be different. Their novel, noninvasive sensor involves coupling of the ion stream directly to a microelectronic device by means of a direct cell–chip contact.

Their test subject was the serotonin receptor, a protein that resides in the membrane and plays an important role in the nervous system. Blockers specific to this receptor are used clinically to reduce the nausea that results from chemotherapy and for the treatment of irritable bowl syndrome. The scientists allowed cells with many serotonin receptors in their membranes to grow onto a silicon chip with a linear arrangement of many transistor switches. For measurement, a cell that covers the tiny gap (gate) of one of the transistors must be selected. The voltage in this cell is controlled with a special electrode. If serotonin is then applied, the ion channels open; a stream of ions flows along a narrow gap between the cell and the chip into the cell. The resulting signal in the transistor voltage is proportional to the current across the membrane.

By using a variety of serotonin concentrations, a dosage–effect relationship can be determined. The application of new potential receptor blockers allows their effectiveness to be quickly and easily evaluated by means of their effect on the transistor signal. “With this coupling of a ligand-steered ion channel to a transistor at the level of an individual cell,” Fromherz says, “we have laid the foundation for receptor-cell–transistor biosensor technology.”


Story Source:

The above story is based on materials provided by John Wiley & Sons, Inc.. Note: Materials may be edited for content and length.


Cite This Page:

John Wiley & Sons, Inc.. "Bioelectronics: Progress Toward Drug Screening With A Cell-transistor Biosensor." ScienceDaily. ScienceDaily, 26 June 2007. <www.sciencedaily.com/releases/2007/06/070625111817.htm>.
John Wiley & Sons, Inc.. (2007, June 26). Bioelectronics: Progress Toward Drug Screening With A Cell-transistor Biosensor. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2007/06/070625111817.htm
John Wiley & Sons, Inc.. "Bioelectronics: Progress Toward Drug Screening With A Cell-transistor Biosensor." ScienceDaily. www.sciencedaily.com/releases/2007/06/070625111817.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins