Featured Research

from universities, journals, and other organizations

New Way To Target And Kill Antibiotic-resistant Bacteria Found

Date:
July 12, 2007
Source:
University of North Carolina at Chapel Hill
Summary:
Putting bacteria on birth control could stop the spread of drug-resistant microbes, and researchers have found a way to do just that. The scientists discovered a key weakness in the enzyme that helps "fertile" bacteria swap genes for drug resistance.

Antibiotic resistance propagates in bacteria by moving DNA strands containing the resistance genes to neighboring cells. An enzyme called relaxase is essential for this process. Bisphosphonates, already approved to treat bone loss, have now been shown to potently disrupt the relaxase function. Some bisphosphonates prevent the transfer of antibiotic resistance genes and selectively kill bacterial cells that harbor resistance.
Credit: Scott Lujan, University of North Carolina at Chapel Hill

Putting bacteria on birth control could stop the spread of drug-resistant microbes, and researchers at the University of North Carolina at Chapel Hill have found a way to do just that.

Related Articles


The team discovered a key weakness in the enzyme that helps "fertile" bacteria swap genes for drug resistance. Drugs called bisphosphonates, widely prescribed for bone loss, block this enzyme and prevent bacteria from spreading antibiotic resistance genes, the research shows. Interfering with the enzyme has the added effect of annihilating antibiotic-resistant bacteria in laboratory cultures. Animal studies of the drugs are now underway.

"Our discoveries may lead to the ability to selectively kill antibiotic-resistant bacteria in patients, and to halt the spread of resistance in clinical settings," said Matt Redinbo, Ph.D., senior study author and professor of chemistry, biochemistry and biophysics at UNC-Chapel Hill.

The study provides a new weapon in the battle against antibiotic-resistant bacteria, which represent a serious public health problem. In the last decade, almost every type of bacteria has become more resistant to antibiotic treatment. These bugs cause deadly infections that are difficult to treat and expensive to cure.

Every time someone takes an antibiotic, the drug kills the weakest bacteria in the bloodstream. Any bug that has a protective mutation against the antibiotic survives. These drug-resistant microbes quickly accumulate useful mutations and share them with other bacteria through conjugation -- the microbe equivalent of mating.

Conjugation starts when two bacteria smoosh their membranes together. After each opens a hole in their membrane, one squirts a single strand of DNA to the other. Then the two go on their merry way, one with new genes for traits such as drug resistance. Many highly-drug resistant bacteria rely on an enzyme, called DNA relaxase, to obtain and pass on their resistance genes. A mutation that provides antibiotic resistance can sweep through a colony as quickly as the latest YouTube hit.

The researchers analyzed relaxase because it plays a crucial role in conjugation. The enzyme starts and stops the movement of DNA between bacteria. "Relaxase is the gatekeeper, and it is also the Achilles' heel of the resistance process," Redinbo said.

Led by graduate student Scott Lujan, the team suspected they could block relaxase by searching for vulnerability in a three-dimensional picture of the relaxase protein. Lujan, a biochemistry graduate student in the School of Medicine, confirmed the hunch using x-ray crystallography, which creates nanoscale structural images of the enzyme.

The researchers predicted that the enzyme's weak link is the spot where it handles DNA. Relaxase must juggle two phosphate-rich DNA strands at the same time. The team suspected a chemical decoy -- a phosphate ion -- could plug this dual DNA binding site. Redinbo, who has a background in cancer and other disease-related research, realized that bisphosphonates were the right-size decoy.

There are several bisphosphonates on the market; two proved effective. The drugs, called clodronate and etidronate, steal the DNA binding site, preventing relaxase from handling DNA. This wreaks havoc inside E. coli bacteria that are preparing to transfer their genes, the researchers found. Exactly how bisphosphonates destroy each bacterium is still unknown, Redinbo said, but the drugs are potent, wiping out any E. coli carrying relaxase. "That it killed bacteria was a surprise," he said. By targeting these bacteria, the drugs act like birth control and prevent antibiotic resistance from spreading.

Redinbo, who cautions that the results only apply to E. coli, said further testing will reveal whether bisphosphonates also attack similar species like Acinetobacter baumannii (hospital-acquired pneumonia), Staphylococcus aureus (staph infections) and Burkholderia (lung infections).

"We hope this discovery will help existing antibiotics or offer a new treatment for antibiotic-resistant bacteria," he said.

The drugs may be most effective at sites where clinicians can best control dosage -- on skin and in the gastrointestinal tract, Redinbo said. Other applications may include disinfectants and treatments for farm animals.

Study coauthors, all from UNC-Chapel Hill, include Laura Guogas, Heather Ragonese and Steven Matson. Redinbo is a member of the UNC Lineberger Comprehensive Cancer Center.

Redinbo and his colleagues have filed a patent and formed a small company to further develop the technology.

The study appears online the week of July 9, 2007, in the Proceedings of the National Academy of Sciences. Funding was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of North Carolina at Chapel Hill. Note: Materials may be edited for content and length.


Cite This Page:

University of North Carolina at Chapel Hill. "New Way To Target And Kill Antibiotic-resistant Bacteria Found." ScienceDaily. ScienceDaily, 12 July 2007. <www.sciencedaily.com/releases/2007/07/070709171636.htm>.
University of North Carolina at Chapel Hill. (2007, July 12). New Way To Target And Kill Antibiotic-resistant Bacteria Found. ScienceDaily. Retrieved December 27, 2014 from www.sciencedaily.com/releases/2007/07/070709171636.htm
University of North Carolina at Chapel Hill. "New Way To Target And Kill Antibiotic-resistant Bacteria Found." ScienceDaily. www.sciencedaily.com/releases/2007/07/070709171636.htm (accessed December 27, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Breeding Christmas Trees Without Needle Mess

Breeding Christmas Trees Without Needle Mess

AP (Dec. 26, 2014) The presents are unwrapped. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree. Scientist hope to make that process a ghost of Christmas past. (Dec. 26) Video provided by AP
Powered by NewsLook.com
Venemous White Cobra Gets New Home

Venemous White Cobra Gets New Home

Reuters - Light News Video Online (Dec. 24, 2014) A venemous white cobra gets a new home at the San Diego Zoo, following a dramatic capture and months of quarantine. Sharon Reich reports Video provided by Reuters
Powered by NewsLook.com
Christmas Trees And Bugs Are Seemingly Symbiotic

Christmas Trees And Bugs Are Seemingly Symbiotic

Newsy (Dec. 24, 2014) The National Christmas Tree Association says bugs in trees are a relatively small problem, but recommends giving your tree a good shake anyway. Video provided by Newsy
Powered by NewsLook.com
Uruguay Chooses 'smart' Farming Methods for Ambitious Goals

Uruguay Chooses 'smart' Farming Methods for Ambitious Goals

AFP (Dec. 24, 2014) Using GM crops, genetically chosen cows, and technology like satellites and drones, Uruguay - with a population of just 3 million people - is aiming to produce enough food to feed 50 million. Duration: 03:10 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins