Featured Research

from universities, journals, and other organizations

Promising New Targets For Antibiotics Found

Date:
August 31, 2007
Source:
University of Illinois at Chicago
Summary:
Researchers have identified new sites on the bacterial cell's protein-making machinery where antibiotics can be delivered to treat infections. They tested many options. Of the thousands of mutations tested, 77 were detrimental to the function of the ribosome. The regions where those mutations lie can be targeted by new antibiotics, which may be used to treat such diseases as tuberculosis and pneumonia, one of the scientists said.

University of Illinois at Chicago researchers have identified new sites on the bacterial cell's protein-making machinery where antibiotics can be delivered to treat infections.

"The primary challenge of antibiotic therapy has been fighting infections caused by the pathogens which became resistant to antibiotics," says Alexander Mankin, professor and associate director of UIC's Center for Pharmaceutical Biotechnology and lead investigator of the study. "Not a single class of drugs has escaped the inevitable emergence of resistance."

At present, Mankin said, "the constant development of new drugs is the only available strategy to keep up with the ever-growing variety of antibiotic-resistant pathogens."

Mankin and his research team are looking for new vulnerable sites on bacteria where drugs can be delivered to fight the infections.

"First we need to find the target, and then the weapons can be developed," he said.

In the study, which is published in the Journal of Biological Chemistry, UIC researchers divided a ribosome -- the main apparatus within the cell that makes protein, and one of the best antibiotic targets -- into specific sections. Random genetic mutations were engineered in each area, and the researchers looked for those alterations that stopped the ribosome from making proteins.

Of the thousands of mutations tested, 77 were detrimental to the function of the ribosome. The regions where those mutations lie can be targeted by new antibiotics, which may be used to treat such diseases as tuberculosis and pneumonia, Mankin said.

"If we find drugs that can bind to these regions, they will likely kill the pathogenic cell," he said.

According to Mankin, the development of microbial genomics brought new hope for the development of antibiotics, but few successful drug candidates have been produced using this method.

An alternative approach is to "follow the lead of nature, and develop new drugs that act on the targets in the course of evolution."

"The ribosome is the perfect target," he said. "More than half of all known antibiotics arrest cell growth by interfering with the ribosomal functions and inhibiting protein synthesis. This is an innovative concept, targeting new sites in the ribosome."

The study was funded through a grant from the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Chicago. "Promising New Targets For Antibiotics Found." ScienceDaily. ScienceDaily, 31 August 2007. <www.sciencedaily.com/releases/2007/08/070830154752.htm>.
University of Illinois at Chicago. (2007, August 31). Promising New Targets For Antibiotics Found. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2007/08/070830154752.htm
University of Illinois at Chicago. "Promising New Targets For Antibiotics Found." ScienceDaily. www.sciencedaily.com/releases/2007/08/070830154752.htm (accessed September 18, 2014).

Share This



More Health & Medicine News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins