Featured Research

from universities, journals, and other organizations

Cell Growth Technology Promises More Successful Drug Development

Date:
September 24, 2007
Source:
Durham University
Summary:
Scientists have developed unique technology to grow stem cells and other tissue in the laboratory in conditions similar to the way they grow in the human body. The technology, developed and patented, is a plastic scaffold which allows cells to be grown in a more realistic three-dimensional form compared to the traditional flat surface of a Petri dish.

Dr Przyborski with the plastic scaffold which allows stem cells and other tissues to be grown in a more realistic three-dimensional (3D) form compared to the traditional flat surface of a Petri dish.
Credit: Image courtesy of Durham University

Scientists have developed unique technology to grow stem cells and other tissue in the laboratory in conditions similar to the way they grow in the human body.

The technology, developed and patented by scientists at Durham University and its spin-out company ReInnervate Limited, is a plastic scaffold which allows cells to be grown in a more realistic three-dimensional (3D) form compared to the traditional flat surface of a Petri dish.

Evidence gathered by the research team shows that the technology is a cheap and straightforward way of cultivating cells in 3D. Using it could lead to more successful drug development programmes and a reduction in unnecessary tests on animals.

A study proving the effectiveness of the scaffold, funded by ReInnervate and the Engineering and Physical Sciences Research Council (EPSRC), was recently published in the Journal of Anatomy.

A large proportion of drugs fail at the testing stage, costing industry millions of pounds in research and development costs and failed drugs trials every year. At the moment, most drugs in development are first tested on cells grown in two-dimensions (2D) in standard laboratory equipment such as Petri dishes or flasks but cells in the human body form tissues and grow in more complex, three-dimensional ways.

The new study tested the toxic effect of a cancer drug called Methotrexate (MTX) on liver cells grown in three and two dimensions. Liver cells are frequently used in the drug development industry to test the toxicity of drugs and MTX is known to cause liver damage at high doses.

Tests showed that the structure and properties of the cells grown using the 3D scaffold were most similar to liver cells found in the human body, compared with the 2D cells which appeared "disorganised" when viewed under the microscope.

When subject to doses of MTX, cells grown in 2D died at very low concentrations, whereas 3D cells grown using the scaffold were far more robust and more accurately reflected the behaviour of cells in the human body when subjected to similar doses of the drug.

Dr Stefan Przyborski, a senior researcher with Durham University and Chief Scientific Officer of ReInnervate, has tested ten different tissue types on the scaffold, including bone, liver, fat and stem cells from bone marrow, and is marketing the product for commercial use.

The scaffold is made of highly porous polystyrene, is about the size of a ten pence piece and resembles a thin white disc. It has a structure resembling that of a sponge and is riddled with tiny holes which scientists are able to populate with cells which are then cultivated under laboratory conditions.

The technology has potential to be used to grow human stem cells for drug development. Their use may reduce the need for the tests on animals that are usually the next step before progressing to clinical trials in humans.

Another current use of the scaffold involves growing skin cells which are being used by the cosmetics industry to test cosmetics.

Dr Przyborski said: "Our results suggest that testing drugs on liver cells using our 3D culture system may be more likely to reflect true physiological responses to toxic substances. Because the 3D cells are cultivated under more realistic conditions, it means that they function more like real tissues.

"Scientists are therefore able to gain a more accurate idea of how a drug will behave in the human body, knowledge which can contribute to improving the efficiency of drug discovery, reducing drug development costs, and may help reduce the number of animals in research.

"There are other ways to growing cells in 3D in the laboratory. However, these approaches are restricted by their variability, complexity, expense and they are not easily adapted to routine use in high throughput screening studies.

"Our technology is essentially a well engineered piece of plastic that provides a suitable environment for cells to grow more naturally in a 3D configuration. Our product is available off-the-shelf, it is easy to use in routine applications, it is highly adaptable to different tests, it is inert and it is cheap and easy to produce and manufacture."

Dr Stefan Przyborski and colleagues at Durham University play a key role in the North-east England Stem Cell Institute (NESCI), a unique interdisciplinary collaboration to convert stem cell research and technologies into cost-effective, ethically-robust 21st century health solutions to ameliorate degenerative diseases, the effects of ageing and serious injury.

Reference: 'Culture of HepG2 liver cells on three dimensional polystyrene scaffolds enhances cell structure and function during toxicological change.' Bokhari, M et al.; (doi: 10.1111/j.1469-7580.2007.00778.x)


Story Source:

The above story is based on materials provided by Durham University. Note: Materials may be edited for content and length.


Cite This Page:

Durham University. "Cell Growth Technology Promises More Successful Drug Development." ScienceDaily. ScienceDaily, 24 September 2007. <www.sciencedaily.com/releases/2007/09/070919073020.htm>.
Durham University. (2007, September 24). Cell Growth Technology Promises More Successful Drug Development. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2007/09/070919073020.htm
Durham University. "Cell Growth Technology Promises More Successful Drug Development." ScienceDaily. www.sciencedaily.com/releases/2007/09/070919073020.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins