Featured Research

from universities, journals, and other organizations

Viewing Dye-packed Vesicles Causes Them To Explode

Date:
October 4, 2007
Source:
The Rockefeller University
Summary:
It's a long-standing question: Can just the act of observing an experiment affect the results? According to a new study, if the experiment uses a fluorescent dye called acridine orange, the answer is a resounding "yes." A fluorescent marker, long used in imaging to help researchers watch membrane-bound vesicles as they exit a cell, can actually cause the vesicles to break open as soon as they're hit with light from a microscope. New research describes how to differentiate a microscopy side effect from the cell's true process.

Fluorescent particles of acridine orange dye cause bright bursts of light when the vesicles holding them break open. Originally thought to be the hallmark of a process called exocytosis, new research shows that these flashes are largely due to light from the microscope causing the vesicles to degrade, a process that occurs each time the microscope field changes.
Credit: Image courtesy of The Rockefeller University

It’s a long-standing question: Can just the act of observing an experiment affect the results? According to a new study by Rockefeller University scientists, if the experiment uses a fluorescent dye called acridine orange, the answer is a resounding “yes.”

A fluorescent marker, long used in imaging to help researchers watch membrane-bound vesicles as they exit a cell, can actually cause the vesicles to break open as soon as they're hit with light from a microscope. New research describes how to differentiate a microscopy side effect from the cell's true process.

Cells use a process called exocytosis to deliver membrane-bound vesicles full of proteins, neurotransmitters and other molecules to their outer membrane and beyond. Among other things, these little chemical packets are vital for cell-to-cell communication. So researchers interested in better understanding exocytosis have been using acridine orange to label the vesicles in an attempt to observe the process. Because the dye gets trapped in multiple vesicles and increases its fluorescence upon release from the vesicles, the resulting characteristic flash has been considered a hallmark of exocytosis imagery.

But research published Aug. 21 in the Proceedings of the National Academy of Sciences by Sanford Simon, head of the Laboratory of Cellular Biophysics, and research assistant professor Jyoti Jaiswal, shows that the characteristic acridine orange flash is not the exclusive result of exocytosis at all. Instead, light from the microscope was also causing vesicles to burst in a process known as lysis. “Not only do the dye molecules concentrate in vesicles but, at higher concentrations, it’s known that light can cause acridine orange to lyse them,” Jaiswal says. Just looking at the vesicles through a microscope has the potential to disrupt lipid membranes.

While doing an experiment in 1992, Simon used acridine orange to study exocytosis and saw just what he expected. “For 20 to 30 seconds, I was ecstatic,” he says. “But then I realized that it didn’t necessarily mean we were looking at exocytosis. We were possibly just creating photodamage.” His lab has since used other means to study the process.

Then a recent series of papers, in which the authors used acridine orange to explore calcium-triggered exocytosis in astrocytes, aroused Simon and Jaiswal’s suspicions. Astrocytes are small, star-shaped glial cells that are part of the neural system’s support network; because their role in brain physiology and neural regulation is only just beginning to be addressed, understanding exocytosis in these cells is particularly important.

So the Rockefeller researchers did their own experiments with acridine orange. They found that when they looked through the microscope they could, indeed, see bright flashes of dye that looked as if the vesicles were fusing with the cell’s plasma membrane. But when they moved the microscope field to a different area of the cell, they saw another flurry of fireworks — proof that light from the microscope was prompting the acridine orange-filled vesicles to lyse.

This puts the prior acridine orange–exocytosis experiments into question, Jaiswal says. “Using acridine orange means that the onus is on the person doing the experiment to prove that what they’re seeing is fusion.” And that was precisely what he and Simon went on to do. In order to differentiate between exocytosis and imaging-induced lysis, Simon notes that it’s important to quantify the results.

So the two researchers put together a combination of experimental and mathematical techniques that could then be used to discriminate between vesicles that are lysing from those that are fusing with the membrane. By fluorescently labeling the vesicle membrane protein with a different, nondisruptive marker, and quantifying how the particles dispersed, they were able to distinguish between the two processes and found that calcium-triggered exocytosis does occur in astrocytes — just not to the exaggerated degree it had appeared using acridine orange.

In fact, Jaiswal and Simon were even able to pin down at least one of the astrocyte organelles that can undergo this kind of exocytosis: lysosomes. Exocytosis of these membrane-bound compartments is already known to play a role in immunity and healing wounded cells, so the new findings provide another avenue for researchers to pursue. “There’s already a body of literature on lysosome exocytosis and its roles, and we’ve looked at how it’s regulated,” Jaiswal says. “Now, all that literature has become relevant to astrocyte biology, too.”


Story Source:

The above story is based on materials provided by The Rockefeller University. Note: Materials may be edited for content and length.


Cite This Page:

The Rockefeller University. "Viewing Dye-packed Vesicles Causes Them To Explode." ScienceDaily. ScienceDaily, 4 October 2007. <www.sciencedaily.com/releases/2007/09/070928213100.htm>.
The Rockefeller University. (2007, October 4). Viewing Dye-packed Vesicles Causes Them To Explode. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2007/09/070928213100.htm
The Rockefeller University. "Viewing Dye-packed Vesicles Causes Them To Explode." ScienceDaily. www.sciencedaily.com/releases/2007/09/070928213100.htm (accessed July 24, 2014).

Share This




More Plants & Animals News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins