Featured Research

from universities, journals, and other organizations

Mutations Help Clarify Processes In Cell Division

Date:
December 5, 2007
Source:
University of Arkansas, Fayetteville
Summary:
The architecture of cell division -- a fundamental process about which little is known, but when something goes wrong, it can cause cell death -- is the focus of a new study. Researchers are searching for cellular factors that counteract destructive mutations in this process.

DNA and proteins called histones are packaged together to form chromosomes. University of Arkansas biologist Inύs Pinto studies the process of cell division, where chromosomes replicate themselves and separate to form daughter cells.
Credit: National Library of Medicine

A University of Arkansas researcher is studying the architecture of cell division – a fundamental process about which little is known, but when something goes wrong, it can cause cell death. Her work in searching for cellular factors that counteract destructive mutations in this process has earned her National Science Foundation funding through 2010.

Related Articles


Inιs Pinto, associate professor of biological sciences, studies chromatin, the structure composed of DNA and proteins, which is essential to cell division, where the chromosomes from an organism replicate themselves, then separate into daughter cells. This form of division is common to organisms from yeast cells to human beings.

“Every time a cell divides, it has to replicate all of its genetic information,” Pinto said. “The cell has come up with this process that we all take for granted. Yet it is really a fascinating and poorly understood process.”

Pinto studies the role of chromatin in chromosome segregation in Saccharomyces cerevisiae, commonly known as baker’s yeast, because yeast divides quickly, is easy to grow, amenable to molecular and genetic manipulations, and has a sequenced genome. This organism serves as a blueprint for understanding how human cells divide.

“We know that the process is conserved. There are also important differences,” Pinto said.

Pinto focuses on proteins within the chromatin, called histones, which remain almost identical in yeast and in humans, indicating conservation over time. A complex composed of histones forms a core for the DNA to wrap around, allowing it to begin the process of compaction that results in a chromosome.

Pinto and her colleagues have shown that a single change of one amino acid in one of the proteins in the histone complex can cause defects in the architecture of the central core, which then causes a mis-attachment of the chromosomes to the spindle fibers that pull chromosomes apart during cell division. They have created another mutation in an enzyme complex that compensates for the first mutation.

“In doing so, we can learn what is interacting with what,” Pinto said. “We give the cell the chance to tell us the answer to the problem.”

Her current NSF-funded work will focus on modifications to the histones. During the cell division process, these proteins become modified by adding or releasing specific chemical groups that act as signals on the surface of the chromosome. These modifications can create distinct regions within chromosomes that allow cellular factors to distinguish one area from the surrounding genetic material, and can serve different functions.

“We don’t know yet what particular signals mean,” Pinto said. The researcher and her colleagues will manipulate the areas of modification to see what particular histone modifications are necessary for successful cell division.

“It’s like a puzzle where you only have a few pieces,” Pinto said. “There’s not a clear cut signal and consequence. We will learn new insights into the cellular mechanisms that govern the basic process of chromosome transmission from mother to daughter cell.”

Pinto is a professor in the J. William Fulbright College of Arts and Sciences.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "Mutations Help Clarify Processes In Cell Division." ScienceDaily. ScienceDaily, 5 December 2007. <www.sciencedaily.com/releases/2007/11/071130160450.htm>.
University of Arkansas, Fayetteville. (2007, December 5). Mutations Help Clarify Processes In Cell Division. ScienceDaily. Retrieved November 25, 2014 from www.sciencedaily.com/releases/2007/11/071130160450.htm
University of Arkansas, Fayetteville. "Mutations Help Clarify Processes In Cell Division." ScienceDaily. www.sciencedaily.com/releases/2007/11/071130160450.htm (accessed November 25, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, November 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Feast Your Eyes: Lamb Chop Sent Into Space from UK

Feast Your Eyes: Lamb Chop Sent Into Space from UK

Reuters - Light News Video Online (Nov. 25, 2014) — Take a stab at this -- stunt video shows a lamb chop's journey from an east London restaurant over 30 kilometers into space. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Cambodian Capital's Only Working Elephant to Retire in Jungle

Cambodian Capital's Only Working Elephant to Retire in Jungle

AFP (Nov. 25, 2014) — Phnom Penh's only working elephant was blessed by a crowd of chanting Buddhist monks Tuesday as she prepared for a life of comfortable jungle retirement after three decades of giving rides to tourists. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) — A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins