Featured Research

from universities, journals, and other organizations

Dissecting The Genetic Components Of Adaptation Of E. Coli To The Mouse Gut

Date:
January 12, 2008
Source:
PLoS Genetics
Summary:
New insights have been made into the evolutionary mechanisms that facilitate the remarkably fast adaptation of intestinal bacteria within their natural environment Using germ-free mice -- a simplified but ecologically relevant system -- scientists analyzed the intestinal adaptation of a model bacterial strain, Escherichia coli MG1655.

New insights into the evolutionary mechanisms that facilitate the remarkably fast adaptation of intestinal bacteria within their natural environment are provided by researchers from INSERM and INRA at University Paris Descartes.

Using germ-free mice -- a simplified but ecologically relevant system -- the scientists analyzed the intestinal adaptation of a model bacterial strain, Escherichia coli MG1655. E. coli is naturally resident within the adult mammalian gut and one of the first bacteria to colonize the human intestine at birth. The mammalian intestine is therefore a privileged site to study how co-evolution between hosts and the trillions of bacteria that form the commensal flora has shaped the genome of each partner and promoted the development of mutualistic interactions.

Commensal bacteria settle on all surfaces exposed to the outside but most prominently in our intestine where they develop a high degree of interdependency with their host. Recent work has shown how these bacteria may impact on our health by modulating our metabolic functions and immune defences. Much less is known on how commensal bacteria adapt to the open and constantly changing ecosystem represented by our intestine.

Intestinal colonization of germ-free mice by E. coli was followed by the very rapid selection of bacteria carrying mutations in a master regulator that controls and coordinates the expression of over 100 target genes. The important selective advantage conferred by the mutations was related with their additive and independent effects on genes regulating bacterial motility and permeability.

These results suggest that global regulators may have evolved to coordinate physiological activities necessary for adaptation to complex environments and that mutations offer a complementary genetic mechanism to adjust the scale of the physiological regulation controlled by these regulators in distinct environments.

While this study yields an interesting model to analyze how intestinal bacteria can adapt to their host, the authors stress that it represents a simplified ecological system compared with the complexity prevailing within the human intestine. Future work will be necessary to assess how commensal bacteria can adapt to their host while simultaneously competing with hundreds of other bacterial species present in the intestinal microecological system.

Citation: Giraud A, Arous S, Gaboriau-Routhiau V, De Paepe M, Bambou JC, et al. (2008) Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet 4(1): e2. doi:10.1371/journal.pgen.0040002


Story Source:

The above story is based on materials provided by PLoS Genetics. Note: Materials may be edited for content and length.


Cite This Page:

PLoS Genetics. "Dissecting The Genetic Components Of Adaptation Of E. Coli To The Mouse Gut." ScienceDaily. ScienceDaily, 12 January 2008. <www.sciencedaily.com/releases/2008/01/080111132023.htm>.
PLoS Genetics. (2008, January 12). Dissecting The Genetic Components Of Adaptation Of E. Coli To The Mouse Gut. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2008/01/080111132023.htm
PLoS Genetics. "Dissecting The Genetic Components Of Adaptation Of E. Coli To The Mouse Gut." ScienceDaily. www.sciencedaily.com/releases/2008/01/080111132023.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins