Featured Research

from universities, journals, and other organizations

Sending Carbon Dioxide To Sea

Date:
January 13, 2008
Source:
University of Southern California
Summary:
As the discussion of global warming becomes more serious, there is more talk about options for dealing with the carbon dioxide already in the atmosphere. Some people say we could store millions of tons of carbon in the ocean if we encourage the growth of microscopic marine plants by "fertilizing" the water with dissolved iron. A perspective in the journal Science states that the idea is intriguing, but it would require solid verification before it entered the market for carbon credits.

It is difficult to store large amounts of carbon for long periods of time in the ocean, according to Michaels, the director of the USC College's Wrigley Institute for Environmental Studies.
Credit: Photo by Pamela J. Johnson

As the discussion of global warming becomes more serious, there is more talk about options for dealing with the carbon dioxide already in the atmosphere.

Related Articles


Some people say we could store millions of tons of carbon in the ocean if we encourage the growth of microscopic marine plants by “fertilizing” the water with dissolved iron.

A perspective in the journal Science states that the idea is intriguing, but it would require solid verification before it entered the market for carbon credits. The authors say that the verification research would have to show that the mechanism is effective and environmentally safe and that any negative impacts were balanced by the positive effect of reducing greenhouse gases in the atmosphere.

Anthony Michaels, director of the USC College’s Wrigley Institute for Environmental Studies, said the point of the paper is not that ocean iron fertilization is a bad idea, but rather that it requires more proof, both as a general idea and each time it is tried in experiments.

Michaels is one of 16 authors on the article, which appears in the Policy Forum of the Science issue published Jan. 11. He said the paper reflects a consensus among scientists of many different perspectives about the research that would need to be done to prove that ocean iron fertilization safely stores carbon.

The concept appeals to some entrepreneurs because there might be a big market for companies that can show they removed carbon dioxide from the atmosphere and stored it in the water. Companies that did this might be able to create “carbon credits” that they could sell in states and countries that use cap and trade markets to curtail overall net emissions of carbon dioxide.

Michaels said such a market for carbon credits would require scientific documentation of how much carbon was sequestered in the water and how long it would stay there.

“Our paper makes a simple hard statement: You shouldn’t sell carbon credits until you know how much carbon is stored,” Michaels said. “That’s the key point. You can’t just sell these credits because you guess that carbon is going to be stored. In our opinion, you must actually demonstrate that it did happen. However, if this practice can be shown to predictably store carbon, it could be an important tool for managing greenhouse gases in the future.”

Adding iron to the ocean can encourage several biological processes that sequester carbon dioxide. Iron spurs the growth of microscopic plants and bacteria: These organisms remove carbon dioxide from the water during photosynthesis, by growth on existing nutrients or by the conversion of nitrogen gas to organic nitrogen. However, that is only one step toward carbon sequestration. Long-term storage only will occur if the carbon that’s absorbed into this organic matter at the surface then settles into deeper water or falls all the way to the ocean floor.

Michaels said this last point is critical to proving the efficiency of ocean iron fertilization. The oceans already “breathe” billions of tons of carbon dioxide in and out every year. Michaels said much of that CO2 is absorbed only into the surface water, and so it is easily released back into the atmosphere.

“It would be very easy to store huge amounts of carbon in the oceans for very short periods of time,” Michaels said. “It’s much more difficult to store large amounts of carbon for long periods of time. The oceans can take gigatons of carbon out of the atmosphere every year if we don’t care if it comes back in a few years or a decade. Removing carbon and storing it in the ocean for longer than 100 years – which is the ‘canonical number’ for marketing carbon credits and offsets – is a trickier thing to do. The question of how to do it is something science must address to create a responsible market.”


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "Sending Carbon Dioxide To Sea." ScienceDaily. ScienceDaily, 13 January 2008. <www.sciencedaily.com/releases/2008/01/080112092538.htm>.
University of Southern California. (2008, January 13). Sending Carbon Dioxide To Sea. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/01/080112092538.htm
University of Southern California. "Sending Carbon Dioxide To Sea." ScienceDaily. www.sciencedaily.com/releases/2008/01/080112092538.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins