Featured Research

from universities, journals, and other organizations

Nitrogen Fixation Process In Plants To Combat Drought In Various Species Of Legumes

Date:
January 25, 2008
Source:
Basque Research
Summary:
The regulation of the biological fixation of nitrogen in hydric stress conditions varies with the different species of legume plants studied. Nitrogen is the most abundant element in the terrestrial atmosphere but that it is a very poor source of nutrition for plants.

The regulation of the biological fixation of nitrogen in hydric stress conditions varies with the different species of legume plants studied. This was the conclusion of Ruben Ladrera Fernández in his PhD thesis, “Models of regulation of nitrogen fixation in response to drought: Soya and Medicago”, in which the different ways of distinct species of legumes respond to drought conditions are explained.

Biological fixation of nitrogen

In his thesis Mr Ladrera explains that nitrogen is the most abundant element in the terrestrial atmosphere but that it is a very poor source of nutrition for plants. This apparent paradox is due to the fact that atmospheric nitrogen is inert and cannot be used by living things and thus has to be reduced to other chemical forms such as nitrate (NO3-) or ammonium (NH4+) in order to be used by plants. This situation causes a disproportionate amount of nitrogenous fertilisers to be used for agriculture, giving rise to various environmental problems such as contamination of soil and water or the emission of oxides of nitrogen into the atmosphere.

However, some organisms are able to reduce atmospheric nitrogen to ammonium for its subsequent metabolic use, which is known as the biological fixation of nitrogen (BFN). These nitrogen-fixing organisms (also called diazotrophs), can fix nitrogen either as free living or in symbiosis with plants. Amongst the various nitrogen-fixing symbiotic associations, the agriculturally most important is that carried out by plants belonging to the legume and bacteria families, generically known as rhizobes.

In this symbiosis — according to the research undertaken by Mr Ladrera — bacteria dwelling in specialised organs of plant roots known as nodules are capable of using atmospheric nitrogen and reducing it to ammonium, which is exported to the plant, this providing the carbon from photosynthesis to the bacteria and which is necessary to carry out bacteroidal respiration.

What happens in drought or hydric stress

Rubén Ladrera states in his thesis that BFN is a process highly sensitive to drought, to such an extent that it is rapidly inhibited in hydric stress conditions and thus causes significant losses of leguminous crops at a worldwide level. However, it is still not known what the exact mechanism responsible for this inhibition is. Various mechanisms have been put forward, amongst which is a limiting of oxygen in the nodules, a process of retroinhibition using nitrogen and a limiting of the carbon flow to the bacteria.

In this context, the effect of drought on the nodular metabolism and on the plant in different species of legumes (Soya, alfalfa and Medicago truncatula) was studied. To this end, Mr Ladrera used plants from different varieties of each species and that demonstrated different tolerances to hydric stress, with the aim of identifying factors involved in the regulation of BFN.

The results of the research show a limiting of the carbon flow to the bacteria is produced as well as an accumulation of nitrogenated compounds in the nodule (but not in the leaves) of the Soya plants subject to drought, at the same time as the inhibition of the BFN. These results show that the regulation of the BFN in Soya, in hydric stress conditions, is produced at a localised level, in the nodule itself, and that the metabolism of carbon and nitrogen is involved in this.

Nevertheless, in the case of other species analysed - alfalfa and Medicago truncatula -, drought caused an accumulation of carbonated compounds in the nodules, which indicates the regulation of BFN in these species is produced independently of nodular carbon metabolism.

These differences — concludes the author of the PhD thesis – appear to be due to the greater tolerance shown by the species of the Medicago genus to drought conditions.

The PhD work was directed by Professor César Arrese-Igor Sánchez and senior lecturer Ms Esther González García from the Department of Environmental Sciences at the Public University of Navarre.


Story Source:

The above story is based on materials provided by Basque Research. Note: Materials may be edited for content and length.


Cite This Page:

Basque Research. "Nitrogen Fixation Process In Plants To Combat Drought In Various Species Of Legumes." ScienceDaily. ScienceDaily, 25 January 2008. <www.sciencedaily.com/releases/2008/01/080123085302.htm>.
Basque Research. (2008, January 25). Nitrogen Fixation Process In Plants To Combat Drought In Various Species Of Legumes. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2008/01/080123085302.htm
Basque Research. "Nitrogen Fixation Process In Plants To Combat Drought In Various Species Of Legumes." ScienceDaily. www.sciencedaily.com/releases/2008/01/080123085302.htm (accessed July 29, 2014).

Share This




More Plants & Animals News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rodents Rampant in Gardens Around Louvre

Rodents Rampant in Gardens Around Louvre

AP (July 29, 2014) — Food scraps and other items left on the grounds by picnickers brings unwelcome visitors to the grounds of the world famous and popular Louvre Museum in Paris. (July 29) Video provided by AP
Powered by NewsLook.com
Jane Goodall Warns Great Apes Face Extinction

Jane Goodall Warns Great Apes Face Extinction

AFP (July 29, 2014) — The world's great apes face extinction within decades, renowned chimpanzee expert Jane Goodall warned Tuesday in a call to arms to ensure man's closest relatives are not wiped out. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) — Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Rat Infestation at Paris' Tuileries Garden

Rat Infestation at Paris' Tuileries Garden

AFP (July 29, 2014) — An infestation of rats is causing concern among tourists at Paris' most famous park -- the Tuileries garden next to the Louvre Museum. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins