Featured Research

from universities, journals, and other organizations

How Worms Protect Their Chromosomes: Thereby Hangs A Surprising Tail

Date:
March 10, 2008
Source:
Salk Institute
Summary:
Scientists have discovered that the roundworm C. elegans constructs the protective tips of its chromosomes -- known as telomeres -- with a little more panache than do mammals, a finding that could deepen our understanding of the interrelationship of aging and cancer.

Artistic rendering of C. elegans telomeres. Unlike mammals, the tiny roundworm protects the tips of its chromosomes with two different motifs.
Credit: Courtesy of Dr. Jan Karlseder, Salk Institute for Biological Studies

A team of scientists at the Salk Institute for Biological Studies has discovered that the roundworm C. elegans constructs the protective tips of its chromosomes -- known as telomeres -- with a little more panache than do mammals, a finding that could deepen our understanding of the interrelationship of aging and cancer.

Related Articles


In a study reported in March 7 issue of the journal Cell, researchers in the laboratory of Jan Karlseder, Ph.D., Hearst Endowment Associate Professor of the Molecular and Cell Biology Laboratory, showed that unlike mammals, who normally terminate both ends of every chromosome with a string of DNA rich in the base guanine (G), C. elegans can also decorate a telomere with a different motif, a strand abundant in the base cytosine (C).

Karlseder says discovering this deviation from the standard G-tail issued to mammals was completely unanticipated. "Telomeres protect the ends of chromosomes like a glove," he said. "In mammals telomeres have a single-stranded overhang with a TTAGGG sequence about 150 bases long. We found that in worms there can also be a single-stranded overhang of a C-containing strand."

Safeguarding the ends of linear chromosomes is essential for any animal's survival. "Telomere loss can lead to chromosome fusion," explained Karlseder. "If that happens when a cell divides its chromosomes could randomly break, leading to a condition known as genome instability, a major cause of cancer."

Telomeres are the object of intense investigation because these structures represent the physical link between cancer and aging research. Normally, telomeres shorten as cells divide, acting as a kind of cellular clock ticking down a cell's age: when they shorten to a critical point the cell dies. However, in cancer, the clock runs backwards and telomeres aberrantly elongate, turning what could be a cellular fountain of youth into a potential malignancy.

Karlseder and lead author Marcela Raices, Ph.D., discovered the unique C-tails in collaboration with Andrew Dillin, Ph.D., associate professor in the Molecular and Cell Biology Laboratory. The team first found that not only did worm telomere tails come in two flavors but that each was uniquely attached to the chromosome. Double-stranded DNA terminates with mirror-image ends, like right and left hands. In mammals, G-tails extend from the "right hand"-- or 5' end. But worm C-tails hung off the DNA "left hand" or 3' end.

They then identified two novel worm proteins that bound preferentially to either C- or G-tails. They capped the study by showing that worms lacking either protein exhibited abnormal telomeres, suggesting that each protein -- like a somewhat similar protein found in mammalian cells -- is part of the machinery regulating the length of C- or G-tailed telomeres.

Using roundworms enabled the experimenters to streamline analysis of these proteins in an animal. "C. elegans is an established model to study aging," said Karlseder. "We can screen the whole worm genome relatively cheaply in a few months. The same experiment in human cells would take years and probably ten times the money. We want to exploit the C. elegans system and then translate our findings into a human system."

Raices, a postdoctoral fellow in both the Karlseder and Dillin labs, also praises worms as a model system. "We think that experiments in C. elegans will allow us to study differences in telomere replication and processing, questions that have been extremely challenging to investigate in human cells. Telomere regulation is extremely important in many human cancers."

An obvious question now emerging from the study is whether C-tails are unique to worms or whether they have been overlooked in mammals. "It is premature to think that C-tails do not exist in human cells," said Karlseder. "We may find them in mammalian cells under certain circumstances, and if so, they could play a role in telomere maintenance and in cancer."

In fact, some investigators propose to stop a cell from becoming cancerous by blocking the enzyme that synthesizes telomeres. Karlseder emphasizes that knowing every strategy used by cells to build a telomere is necessary for that approach to work. "Many people in the field think of the overhangs as the most important part of a telomere," he said. "If we knew how those overhangs were generated and maintained, we could exploit this for cancer therapy."

Also contributing to this study from the Karlseder lab were Candy Haggblom and postdoctoral fellow Ramiro Verdun, Ph.D. Other collaborators included Jack Griffith, Ph.D., and Sarah Compton, Ph.D., at the Lineberger Comprehensive Cancer Center at the University of North Carolina Medical School in Chapel Hill.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Cite This Page:

Salk Institute. "How Worms Protect Their Chromosomes: Thereby Hangs A Surprising Tail." ScienceDaily. ScienceDaily, 10 March 2008. <www.sciencedaily.com/releases/2008/03/080306133935.htm>.
Salk Institute. (2008, March 10). How Worms Protect Their Chromosomes: Thereby Hangs A Surprising Tail. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/03/080306133935.htm
Salk Institute. "How Worms Protect Their Chromosomes: Thereby Hangs A Surprising Tail." ScienceDaily. www.sciencedaily.com/releases/2008/03/080306133935.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins