Featured Research

from universities, journals, and other organizations

Grand Canyon Water Surge Aims To Build Beaches, Restore Ecosystem

Date:
March 7, 2008
Source:
Arizona State University
Summary:
The Grand Canyon will be experiencing a spring of yesteryear, as water flow rates from the Glen Canyon Dam will be significantly increased, then throttled back in a high-flow experiment that runs March 4 through 9. The result will be a controlled swelling of downstream canyon waters. The goal of the high-flow experiment, the third since 1996, is to see if such high flows can help reconstruct some of the canyon's beaches and sand bars that are instrumental to ecological systems and native fishes that have suffered since the building of the Glen Canyon Dam in 1963.

The Grand Canyon will be experiencing a spring of yesteryear, as water flow rates from the Glen Canyon Dam will be significantly increased, then throttled back in a high-flow experiment that runs March 4 through 9.
Credit: Image courtesy of Arizona State University

The Grand Canyon will be experiencing a spring of yesteryear, as water flow rates from the Glen Canyon Dam will be significantly increased, then throttled back in a high-flow experiment that runs March 4 through 9. The result will be a controlled swelling of downstream canyon waters.

The goal of the high-flow experiment, the third since 1996, is to see if such high flows can help reconstruct some of the canyon’s beaches and sand bars that are instrumental to ecological systems and native fishes that have suffered since the building of the Glen Canyon Dam in 1963.

For Mark Schmeeckle, an ASU assistant professor in the School of Geographical Sciences who studies the physics of river flow and turbulence, the exercise will help fine tune three-dimensional computer models that predict how sand bars are rebuilt as a result of water flows through the canyon. Such models can help protect the fragile environments downstream of the dam.

Schmeeckle said data collected before, during and after the flow, including those on topography, flow and sediment transport, will be compared to the 3-D modeling data in an effort to verify the accuracy of the models. He also is working on a model for failure of beach faces after the high-flow event, which will be useful in determining the effect of discharge fluctuations from the dam on beach erosion. Three-dimensional visualization of the modeled data at ASU’s Decision Theater has aided in developing a new understanding of complex flow in recirculation regions where sand bars are built.

The high flow experiment will run for about 60 hours beginning on the evening of March 4. The flood will peak on March 6 to 8 and begin to fall on March 9.

The Glen Canyon Dam stops all sand. As a result the sand that once flowed through the canyon has been reduced to about 6 percent of what it was prior to construction of the dam. Today, only the Paria and Little Colorado Rivers supply significant amounts of sand downstream of the Glen Canyon Dam.

As a result, native fishes and wildlife have teetered on the brink of extinction. Especially vulnerable is the humpback chub, an endangered, 3.5-million year old fish that has seen its habitat nearly destroyed. Reconstructing, or at least managing the environment that these fishes can survive in has become important to environmentalists and engineers alike, making this experiment significant for the future of the ecology of the Grand Canyon and its wildlife.

By allowing flow of water that, at its peak, will be more than three times its normal rate (to a volume of 41,500 cubic feet per second), researchers hope to flush some of the dam system of its backed-up sediment and reconstruct habitat downstream. It is expected that the high water-flows will rebuild eroded beaches downstream of the dam by moving sand accumulated in the riverbed onto sandbars.

That in turn will allow the re-establishment of eddy sandbars that provide the slow moving, backwater channels vital for native fish species. The sand bars also provide camping areas for river runners and hikers, and the beaches provide sand to the canyon that helps preserve archaeological resources.

Schmeeckle’s is one of several experiments that will be run during the high flow period.

“The importance of this experiment is that we will have high-resolution data on the flow and sediment transport in a recirculation eddy during a beach building event,” Schmeeckle said. “With the data we will be able to test and improve our model to the point where we can make accurate predictions of beach deposition.”

“This predictive capability could lead to dam operations that allow for a sustainable sand beach habitat and recreation sites in the Grand Canyon,” Schmeeckle added.


Story Source:

The above story is based on materials provided by Arizona State University. Note: Materials may be edited for content and length.


Cite This Page:

Arizona State University. "Grand Canyon Water Surge Aims To Build Beaches, Restore Ecosystem." ScienceDaily. ScienceDaily, 7 March 2008. <www.sciencedaily.com/releases/2008/03/080306184249.htm>.
Arizona State University. (2008, March 7). Grand Canyon Water Surge Aims To Build Beaches, Restore Ecosystem. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/03/080306184249.htm
Arizona State University. "Grand Canyon Water Surge Aims To Build Beaches, Restore Ecosystem." ScienceDaily. www.sciencedaily.com/releases/2008/03/080306184249.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins