Featured Research

from universities, journals, and other organizations

Marine Bacteria's Mealtime Dash Is A Swimming Success

Date:
March 14, 2008
Source:
Massachusetts Institute of Technology
Summary:
Goldfish are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers recently proved in lab experiments that marine bacteria behave in a similar fashion at mealtime, using their swimming skills to reach tiny food patches that appear randomly in the ocean blue. This behavior at small scales could have global implications for the oceans' carbon cycle.

This image shows P. haloplanktis aggregating in a plume of nutrients in a microfluidics device that creates a microcosm of the bacteria' natural home in the ocean.
Credit: Roman Stocker/MIT

Goldfish in an aquarium are able to dash after food flakes at mealtime, reaching them before they sink or are eaten by other fish. Researchers at MIT recently proved that marine bacteria, the smallest creatures in the ocean, behave in a similar fashion at mealtime, using their swimming skills to reach tiny food patches that appear randomly in the ocean blue.

The behavior of bacteria at these small scales could have global implications, possibly even impacting the oceans' health during climate change.

Scientists in the Department of Civil and Environmental Engineering demonstrated for the first time in lab experiments that the 2-micron-long, rod-shaped marine bacterium P. haloplanktis is able to locate and exploit nutrient patches extremely rapidly, thanks to its keen swimming abilities.

Food sources for these microorganisms come as dissolved nutrients and often appear as localized patches that, if not eaten, are rapidly dissipated by physical processes like diffusion. Foraging, then, becomes a race against time for a bacterium. A rapid response gives it a strong advantage over competitors and may allow it to take up nutrients before they undergo chemical changes. A paper scheduled to publish in the Proceedings of the National Academy of Sciences online Early Edition the week of March 10 describes the research.

"Our experiments have shown that marine bacteria are able to home in very rapidly on short-lived nutrient patches in the ocean," said Roman Stocker, the Doherty Assistant Professor of Ocean Utilization and lead author on the paper. "This suggests that P. haloplanktis' performance is finely tuned to the oceanic nutrient landscape. If you are a bacterium, the ocean looks like a desert to you, where food mostly comes in small patches that are rare and ephemeral. When you encounter one, you want to use it rapidly."

Co-authors on the paper are postdoctoral associate Justin Seymour, graduate student Dana Hunt and Associate Professor Martin Polz all of MIT, and Assistant Professor Azadeh Samadani of Brandeis University.

The researchers were able to prove the behavior of P. haloplanktis by recreating a microcosm of the bacteria's ocean environment using new technology called microfluidics. Microfluidics consists of patterns of minute channels engraved in a clear rubbery material and sealed with a glass slide. The researchers injected bacteria and nutrients into the microchannels at specific locations and, using video-microscopy, recorded the bacteria as they foraged on two simulated food sources: a lysing algal cell that creates a sudden explosion of dissolved nutrients, and the small nutrient plume trailing behind particles that sink in the ocean.

The question of whether the bacteria could or couldn't put their swimming skills to use in this race against time has generated considerable interest in the scientific community over the past decade, because there's a great deal riding on P. haloplanktis' and their relatives' ability to reach these nutrients and recycle them for other animals in the food web.

Scientists who study Earth's carbon cycle know that accounting for all the organic matter in the marine food web is critical, including the matter that exists in these tiny, discrete nutrient patches bacteria feed on. In fact, the carbon in those patches is so important that some scientists believe marine bacteria's capacity to utilize it will determine whether the oceans become a carbon sink or source during global warming.

Until 25 years ago, scientists weren't really aware of the microbial loop, the processing of organic material among the smallest creatures in the ocean: bacteria, phytoplankton, nanozooplankton, viruses, etc. Now they know that the roughly 1 million bacteria per milliliter of ocean play a pivotal role in the microbial loop; by recycling that organic matter, they pass it on to larger animals and prevent it from dropping out of the marine food web.

But quantifying the importance of bacteria in the microbial loop has been difficult, because creating a realistic microenvironment wasn't possible until recently.

"You can hope to study an organism's behavior only in the context of its environment. The habitat of a bacterium, on the other hand, is extremely small, on the order of microns to millimeters," said Stocker. "This has made the study of microbial behavior a formidable technical challenge to date. We have been able to create realistic environmental landscapes for studying marine bacteria in the lab by using microfluidic technology."

P. haloplanktis is a rapid swimmer, propelling itself by a single rotating flagellum in bursts of speed up to 500 body lengths per second. (The fastest land animal, the cheetah, travels at bursts of speed up to 30 body lengths per second.) During experiments, Stocker and team observed that the bacteria used their rapid motility to very effectively swim toward and follow their food sources. That directed movement in response to a chemical gradient (in this case, nutrients) is known as chemotaxis.

"It will be important to see how widespread the use of rapid chemotaxis is in the ocean," said Stocker. "We expect this to depend on the environment; in algal blooms, for example, nutrient patches and plumes will be abundant, and speedy bacteria will be favored. Whenever this is the case, nutrients get recycled much more rapidly, making the food web more productive and potentially affecting the rates at which carbon is cycled in the ocean."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "Marine Bacteria's Mealtime Dash Is A Swimming Success." ScienceDaily. ScienceDaily, 14 March 2008. <www.sciencedaily.com/releases/2008/03/080310181559.htm>.
Massachusetts Institute of Technology. (2008, March 14). Marine Bacteria's Mealtime Dash Is A Swimming Success. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/03/080310181559.htm
Massachusetts Institute of Technology. "Marine Bacteria's Mealtime Dash Is A Swimming Success." ScienceDaily. www.sciencedaily.com/releases/2008/03/080310181559.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins